LHC ab ovo usque ad mala

Mike Lamont on behalf of the LHC team

Integrated luminosity 2010-2012

CMS Integrated Luminosity, pp

- 2010: 0.04 fb⁻¹
 - □ 7 TeV CoM
 - Commissioning
- 2011: 6.1 fb⁻¹
 - 7 TeV CoM
 - \Box ... exploring the limits
- 2012: 23 fb⁻¹
 - 8 TeV CoM
 - □ ... production

Ellipse area in (x,x') plane

Emittance shrinks naturally as we go up in energy Normalized emittance (give or take blow-up from other sources) remains constant

$$\varepsilon_n = \beta \gamma \varepsilon$$

Squeezing in ATLAS

Image courtesy John Jowett

Luminosity

$$L = \frac{N^{2}k_{b}f}{4\rho S_{x}^{*}S_{y}^{*}}F = \frac{N^{2}k_{b}fg}{4\rho e_{n}b^{*}}F$$

Ν	Number of particles per bunch	
K _b	Number of bunches	
f	Revolution frequency	
σ*	Beam size at interaction point	
F	Reduction factor due to crossing angle	
3	Emittance	
ε _n	Normalized emittance	
β*	Beta function at IP	

$$S^* = \sqrt{b^* e}$$

$$ε_n = 2.5 \mu m$$

 $ε = 5.9 \times 10^{-4} \mu m$
 $σ^* = 18.8 \mu m$
(p = 4 TeV, β* = 0.6m)

Peak performance 2012 – the numbers

Energy [TeV]	4.0	Gain wrt 2011: 1.14
β* [m] IP 1/IP2/IP5/IP8	0.6/3.0/ 0.6/ 3.0	Aggressive, exploiting available aperture, tight collimator settings, stability Gain wrt 2011: 1.67
Bunch spacing [ns]	50	Exploiting important advantage that high bunch intensities bring (luminosity proportional to N ²)
Normalized emittance [µm]	~2.5 at collision	67 % of nominal – again injector performance and ability to conserve PSB-PS-SPS(-LHC)
Bunch intensity [protons per bunch]	1.6 – 1.7 x 10 ¹¹	150% of nominal Gain wrt 2011: 1.14
Number of bunches	1374 1368 collisions/IP1&5	Given by 50 ns
Total intensity	2.2 x 10 ¹⁴	70 % of nominal – some issues
Peak luminosity [cm ⁻² s ⁻¹]	7.73 x 10 ³³	mean pile-up>30, peak pile-up >40

8

Performance from injectors 2012

Design report with 25 ns:

- 1.15 x 10¹¹ ppb
- Normalized emittance 3.75 μm

Bunch spacing [ns]	Protons per bunch [ppb]	Norm. emittance H&V [µm] Exit SPS
50	1.7 x 10 ¹¹	1.8
25	1.2 x 10 ¹¹	2.7

N.B. the importance of 50 ns in the performance so far. This at the expense of high pile-up.

(And they are in the process of re-inventing themselves again)

Performance

77 % of design luminosity:

- 4/7 design energy
- nominal bunch intensity++
- ~ 70 % nominal emittance
- $-\beta^* = 0.6 \text{ m} (\text{design } 0.55 \text{ m})$
- half nominal number of bunches

ALICE and LHCb (and TOTEM and ALFA)

- ALICE enjoyed some sustained running at around 5e30 cm⁻²s⁻¹ with collisions between enhanced satellites on main bunches
- Successful beta* = 1 km run for TOTEM and ALFA: With t_{min} ~ 0.0004 GeV² first LHC measurement in Coulomb-Nuclear Interference region

Proton-lead

WHAT WE HAVE LEARNT SO FAR...

In general - beam

- Excellent single beam lifetime vacuum
- Excellent magnetic field quality
- Low tune modulation, low power converter ripple, low RF noise
- Beam-Beam
 - Head-on is not a limitation
 - Long range taken reasonably seriously
- Collective effects had some fun here:

Single and coupled bunch instabilities

In general – optics etc.

- Linear optics: remarkably close to model, corrected to excellent
- Very good magnetic model
 - including dynamic effects
- Better than expected aperture
 - tolerances, alignment
- β^* reach established and exploited
 - aperture, collimation, optics

Operational robustness

- Pre-cycle, injection, 450 GeV, ramp, squeeze, collide:
 - devils in the details we have some fun but remarkably robust
 - good lifetime throughout the whole process (on the whole)
- Machine remarkably reproducible

 optics, orbit, collimator set-up, tune...

Nominal cycle

Turn around 2 to 3 hours on a good day

Machine protection – the challenge met

Can't over stress the importance of this to the success of the LHC (so far). From commissioning to real confidence in under two years.

12-100 HIJ/CHI

R. Assmann

Machine protection

LHC Collimators | Beam: B1 | Set: HW Group:LHC COLLIMATORS

23-05-2012 22:10:55

TCSG.6R7.B1

IP8

TCTH.4L8.B1

TCTVB.4L8

TI2

TCDIV.20607

TCDIV.29012

TCDIV.29509

-2.66

-2.39

-3.54

-1.34

-3.36

-1.5

-2.14

-2.32

-5.43

-9.28

-2.72

-0.48

-4.35

-2.44

-0.53

-2.34

-3.7

R2E: Past/Present/Future

Machine performing well, huge amount of experience & understanding gained, good system performance, excellent tools, reasonable availability following targeted consolidation.

This is the legacy for post LS1

ISSUES & POSSIBLE LIMITATIONS (TWO OF THEM...)

25 ns & electron cloud

- Typical e⁻ densities: $n_e = 10^{10} 10^{12} \text{ m}^{-3}$ (~a few nC/m)
- Typical e⁻ energies: <~ 200 eV (with significant fluctuations)

Electron cloud: possible consequences

- single-bunch instability
- multi-bunch instability
- emittance growth
- gas desorption from chamber walls
- excessive energy deposition on the chamber walls (heat load) - important for the LHC in the cold sectors
- particle losses, interference with diagnostics,...

Electron bombardment of a surface has been proven to reduce drastically the secondary electron yield of a material.

This technique, known as **scrubbing**, provides a mean to suppress electron cloud build-up and its undesired effects

25 ns & electron cloud

- From the experience with the 25 ns scrubbing run and electron cloud free environment after scrubbing at 450 GeV seem not be reachable in acceptable time.
- Operation with high heat load and electron cloud density (with blow-up) seems to be unavoidable with a corresponding slow intensity ramp-up.

The **SEY evolution significantly slows down** during the last scrubbing fills (more than expected by estimates from lab. measurements and simulations)

Giovanni ladarola and team - Evian 12

UFOs (Unidentified Falling Objects)

- UFOs: showstopper for 25 ns and 6.5 TeV?
 - 10x increase in rate and harder UFOs
- UFO "scrubbing": does it work? What parameters?
- Deconditioning expected after LS1
- Operational scenario to be developed:
 - start with lower energy and/or 50 ns beam...
 - Adjust beam loss monitor thresholds based on quench tests

LONG SHUTDOWN 1 (LS1)

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections Complete reconstruction of 1500 of these splices

Consolidation of the 10170 13kA splices, installing 27 000 shunts Installation of 5000 consolidated electrical insulation systems 300 000 electrical resistance measurements 10170 orbital welding of stainless steel lines

18 000 electrical Quality Assurance tests 10170 leak tightness tests

4 quadrupole magnets to be replaced

15 dipole magnets to be replaced

Installation of 612 pressure relief devices to bring the total to 1344 Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

LHC MB circuit splice consolidation proposal

Repeat 3 times per interconnect (1MB, 2MQ) and for ~1700 Interconnects in the machine

Phase III Insulation between bus bar and to ground, Lorentz force clamping

AFTER LS1

Post LS1 energy

- Magnets coming from 3-4 do not show degradation of performance
- Our best estimates to train the LHC (with large errors)
 - ~ 30 quenches to reach 6.25 TeV
 - $-\sim 100$ quenches to reach 6.5 TeV
- The plan
 - Try to reach 6.5 TeV in four sectors in JULY to SEPTEMBER 2014 (NB updated after Aspen)
 - Based on that experience, we decide if to go at 6.5 TeV or step back to 6.25 TeV

β * & crossing angle

- β^* reach depends on:
 - available aperture
 - collimator settings, orbit stability
 - required crossing angle which in turn depends on
 - emittance
 - bunch spacing

Belen Salvachua Ferrando at Evian 12

Beta* reach at 6.5 TeV

Pessimistic scenario:

 $\Rightarrow \beta^* = 70$ cm at 25 ns

- $\Rightarrow \beta^* = 57 \text{ cm at } 50 \text{ ns}$
- Optimistic scenario:
 - ⇒β* = 37cm at 25ns
 - $\Rightarrow \beta^* = 30$ cm at 50 ns

50 versus 25 ns

	50 ns	25 ns
GOOD	Lower total beam currentHigher bunch intensityLower emittance	• Lower pile-up
BAD	 High pile-up Need to level Pile-up stays high High bunch intensity – instabilities 	 More long range collisions: larger crossing angle; higher beta* Higher emittance Electron cloud: need for scrubbing; emittance blow-up; Higher UFO rate Higher injected bunch train intensity Higher total beam current

Expect to move to 25 ns because of pile up...

Beam from injectors LS1 to LS2

		Bunch intensity [10 ¹¹ p/b]	Emittance [mm.mrad] Exit SPS	Into collisions
25 ns ~nominal	2760	1.15	2.8	3.75
25 ns BCMS	2520	1.15	1.4	1.9
50 ns	1380	1.65	1.7	2.3
50 ns BCMS	1260	1.6	1.2	1.6

BCMS = Batch Compression and (bunch) Merging and (bunch) Splittings

Batch compression & triple splitting in PS

Potential performance

	Number of bunches	Bunch intensity LHC FT[1e11]	β*X/ β*sep/ Xangle	Emit LHC [µm]	Peak Lumi [cm- ² s ⁻¹]	~Pile-up	Int. Lumi per year [fb ⁻¹]
25 ns	2760	1.15	55/43/189	3.75	0.93 x 10 ³⁴	25	~24
25 ns low emit	2520	1.15	45/43/149	1.9	1.7 x 10 ³⁴	52	~45
50 ns	1380	1.6	42/43/136	2.5	1.6 x 10 ³⁴ level to 0.8 x 10 ³⁴	87 level to 44	~40*
50 ns low emit	1260	1.6	38/43/115	1.6	2.3 x 10 ³⁴ level to 0.8 x 10 ³⁴	138 level to 44	~40*
 6.5 TeV 1.1 ns bu 150 days 85 mb vi * differe 	unch leng s proton p isible cros nt operat	th hysics s-section ional mode		All numbe	rs approximates		

In words

Nominal 25 ns

- gives more-or-less nominal luminosity

• BCMS 25 ns

- gives a healthy 1.7×10^{34}
- peak < μ > around 50

Nominal 50 ns

- gives a virtual luminosity of 1.6×10^{34} with a pile-up of over 80
- levelling mandatory

• BCM 50 ns

- gives a virtual luminosity of 2.3×10^{34} with a pile-up of over 100
- levelling even more mandatory

Start-up 2015

Evolving 10 year plan

	J	F	M	Α	Μ	J	J	Α	S	0	Ν	D
2011		1	2	3	4	5	6	7	8	9	IONS	
2012			1	2	3	4	5	6	7	8	9	
2013	IONS	IONS	LS1 - SPL	ICE CONSO	OLIDATIO		S 1					
						_						
2014												
2015	RECOM	RECOM	RAMP-UP	1	2	3	4	5	6	7	IONS	
					_ РН	IVSICS A	T 6 5/7	TeV				
2016		RAMP-UP	1	2			. 0.5//		7	IONS		
2017	EXTENDED	YEAR END TE	CHNICAL STO	OP	1	2	3	4	5	6	7	IONS
						2 _ Inio	storun	arado				
2018	LS2 (LIU	UPGRADE	: LINAC4, E	BOOSTER,	PS, LJ	2 – mje		graue				
2019	RECOM	RECOM	RAMP-UP	1	2	3	4	5	6	7	IONS	
				_								
2020		RAMP-UP	1	"UI	LTIMATE	" PHYSI	CS (~2.4	4e34 cm	$^{-2}S^{-1}$)	8	IONS	
		-					<u> </u>					
2021		RAMP-UP	1	2	3	4	5	6	7	8	IONS	
2022	HL-LHC U	PGRADE			LSE	3 – HL-L	HC upg	rade				
		Technical	stop or shu	ıtdown								
		Proton phy Ion Physic Recommis	ysics s sioning									

Projected performance to LS3

Total integrated luminosity: 300 – 400 fb⁻¹

HL-LHC beam parameters at 7 TeV

Stretched Baseline Parameters following 2nd HL-LHC/LIU meeting 8 November 2012

Parameter	nominal	25ns	50ns
nb	2808	2808	1404
Nb	1.15E+11	2.2E+11	3.5E+11
ε _n [mm-mrad]	3.75	2.50	3

HL-LHC 25 ns

Bunch current	2.2e11 ppb
Normalized emittance	2.5 micron
Beta*	15 cm
Crossing angle	590 microrad
Geometric reduction factor	0.305
Peak luminosity	7.4e34 cm ⁻² s ⁻¹
Virtual luminosity	24e34 cm ⁻² s ⁻¹
Levelled luminosity	5e34 cm ⁻² s ⁻¹
Levelled <pile-up></pile-up>	140

2nd HL-LHC General Meeting 13-14 November 2012

44

Conclusions

- LHC operation has shown the results of excellent design, construction, and installation
- Injector complex has performed exceptionally
- Both the above have been fully exploited to give very acceptable performance
- Carrying forward a wealth of experience from operation at 3.5 and 4 TeV.
- There are issues for post LS1 operations. Measures to address these are under close examination.

A well-deserved toast to all who have built such a marvelous machine, and to all who operate it so superbly (first 7 TeV collisions on 30th March 2010)

CERN, 20-Nov-2012 P Jenni (CERN)

First 7 TeV collisions – another view

We delivered 5.6 fb⁻¹ to Atlas in 2011 and all we got was a blooming tee shirt

Acta est fabula, plaudite!