General Exotics review of ATLAS

Higgs Quo Vadis – Aspen 2013

Samuel Calvet
(LPC Clermont-Ferrand)
On behalf of Atlas Collaboration

Exotic Searches

- Higgs-like particle discovered
- But there are still open questions:
 - Hierarchy problem, dark matter, neutrino masses, ...
- The answers may come from exotic models, predicting new phenomena:
 - Excited lepton, graviton, 4th generation, ...
- Exotics on Atlas:
 - 60 papers published/submitted on 7TeV data,
 - New results going out with the 8TeV data
- Will review only 8TeV results except for Exotic Higgs for which 7TeV results will be presented as well

Dilepton resonances

- Search for high mass dilepton resonance, using Z' or G* as benchmarks
- ee:
 - Diphoton trigger (for good background estimation)
 - 2 electrons with E₊>40GeV and 30GeV
 - Acc x eff =73% @ 2TeV
- μμ:
 - Single muon trigger
 - 2 muons with pT>25GeV, opposite charge
 - Acc x eff =46% @ 2TeV
- Backgrounds from MC, apart for fake leptons
 - ee: multijet/W+jets from data
 - μμ: multijet/W+jets negligible
 - MC normalized to data in the Z peak region (80-110GeV)

Dilepton resonances

ATLAS-CONF-2013-017

- Main systematic uncertainties:
 - Variation (15%) and choice (17%) of PDF
 - W+jets/multijet (9%)

M_{G*} [TeV]

WZ resonances

- Resonance decaying into WZ(IvI'I') search for with 2 benchmark models:
 - Extended gauge model (EGM), W': g_{wwz}=g_{wwz}x(m_wm_z/m²_w)
 - Low Scale Technicolor (LSTC), $\rho_T \rightarrow WZ$
- Selection:
 - Single lepton trigger
 - Missing E_T (MET)>25GeV, exactly 3 leptons (e or μ), pT>25GeV
 - evee, evμμ, μνee, μνμμ
 - Same flavor leptons: opposite sign, within 20GeV of the Z mass
 - v' s p_7 recovered from W's mass constraint
 - $\Delta y(W,Z) < 1.8$, $\Delta \phi(W,Z) > 2.6$
- Backgrounds
 - WZ, ZZ, Zγ: from MC
 - Z+jets, ttbar, ...: II+fake lepton → fake rate from data
 - Backgrounds (apart WZ) from a fit for m(WZ)>300GeV
 - WZ from a fit for m(WZ)>500GeV

ATLAS-CONF-2013-015

WZ resonances

- Use spin-2 Randall-Sundrum Graviton as benchmark model
- Select Z boson in ee/μμ events: 66<m_{||}<116GeV.

Second Z depending on the topology: resolved or merged (2 quarks fall into the same jet)

- Resolved selection (m<1TeV)
 - pT_{||}>50GeV
 - 65<m $_{ij}$ <115GeV, $\Delta \phi_{ij}$ <1.6
- Merged selection (m>1TeV)
 - pT_{||}>200GeV
 - pT_i>200GeV, m_i>40GeV

- Background estimated from a fit on the data :
 - If fit's χ^2 has probability<1%, exclude the region of disagreement \rightarrow re-fit
 - Cross-checked with MC

m_{G*} [GeV]

Excited leptons

ATLAS-CONF-2012-146

Benchmark model: contact interaction

- Selection:
 - eey: 2 electrons with pT>40GeV and 35GeV
 - μμγ: 2 muons with 25GeV
 - $pT_v > 30$ GeV, isolated from lepton
 - m_">100GeV
- Background from MC
 - Z+jets scaling from data
 70<m_{||}<110 (correct fake-γ rate)
 - For $m_{\parallel v} > 250 \text{GeV}$:
 - Low statistics for Z+X
 - Fits Z+jet and Z+ γ in the range 110< m_{||\gamma}<1050GeV₂

Type III Seesaw Model Heavy Fermions

- Type III seesaw (→ neutrino masses) predicts heavy fermions N⁰, N[±]
 - $m(N^0)\sim m(N^{\pm})$
 - Search for pair production

- Selection:
 - Single lepton trigger
 - At least 4 leptons (e or μ), pT₁>25GeV, pT_{2.3.4}>10GeV
 - m(II) within 10GeV of the Z mass.
 - Veto events with a second Z
- N[±] from the Z candidate + the closest lepton

- Z+jets (bb/cc): low statistics
 - → reverse the isolation cut and normalize it in a control region

Type III Seesaw Model Heavy Fermions

- Main systematic uncertainties:
 - Electron identification (2.7%)

ATLAS-CONF-2013-019

- Fast simulation vs full G4 simulation: 6.8% on signal acceptance
- Z+jets shape (100%) and normalization (370%)

Top-like quarks

- Top quark partner from addition of weak-isospin singlets/doublets/triplets
- **→** 3 possible decay modes: $t' \rightarrow Wb$, $t' \rightarrow Zt$, $t' \rightarrow Ht$
 - Focus on high jet and b-jet multiplicities: t't' → HtHt/ZtHt/WbHt (H → bb)
- Selection
 - Single lepton triggers, exactly one lepton (e or μ)
 - MET>20GeV, MET+ W transerve mass > 60GeV
 - At least 6 jets, then split into 3 channels
 - 2 b-tagged jets and H_T(=sum jet, lepton pT and MET)<700GeV

Constrain the systematic uncertainties

- 3 b-tagged jets
- At least 4 b-tagged jets: drives the sensitivity
- Backgrounds:
 - tt+jets: MC, light and heavy flavor components of the jets fitted in a control region
 - Other backgrounds (small) MC apart for:
 - W+jets: MC, data-driven normalization
 - Multijet: data-driven

Top-like quarks

- Dominant systematic uncertainties
 - Normalization of backgrounds (42%)
 - tt+heavy flavor fraction (32%)
 - b-/c-tagging (16%/11%)

Di-jet resonance

- Di-jet resonances predicted by many models (compositness, extra-dimensions,...)
- Selection
 - High pT jet trigger
 - 2 anti-kt jets with R=0.6, |y|<2.8, pT>150 GeV
 - $|y^*| = |y_1 y_2|/2 < 0.6$, $m_{ij} > 1$ TeV
- Background fitted from data
- Search for excesses/deficits
 - Take care of Look-Elsewhere Effect
- Limits expressed as function of q* mass 10⁻²
 or simplified Gaussian model (backup)

M_{*}: cut-off scale

Various operators tested

Monojet + missing E_→

Predicted by supersymmetry (gravitino), Large Extra Dimension (graviton), WIMPS ... 2222222222222222

0000000000

- Selection:
 - missing E_⊤ trigger,
 - MET>120GeV
 - At most 2 anti-Kt jets (R=0.4), pT>30GeV, $|\eta|$ <4.5
 - Leading jet: pT>120GeV, $|\eta|$ <2
 - $\Delta \varphi$ (2nd jet, MET)>0.5
 - Lepton veto
- 4 signal regions: MET and leading jet pT larger than 120, 220, 350, 500 GeV
 - 350 GeV working point gives the best sensitivity

(Much more limits in backup slides)

Exotics Higgs

Doubly-charged Higgs boson

EXOT-2012-18

 Extensions (type II seesaw, ...) predict the Higgs sector is extended to a triplet (H⁰, H[±], H^{±±})

- H^{±±}: narrow resonance, pair-produced
 - H^{±±} couples to left- or right-handed fermions
- Search for signals inside windows of $\pm 4\%$ [ee] or $\pm (6+0.007.m_{_{\rm H}})\%$ [e μ , $\mu\mu$] of the tested $m_{_{\rm H}}$

See talk by E. Strauss

Higgs → hidden sector / electron jet

- EXOT-2011-01
- The Higgs boson could decay into hidden-sector particles (string theory, unparticle model)
- 2 models considered → 2- or 3-step decay chains
 - New particles assumed very light → decays are boosted → jet of electrons
 - $m(h_{d.1})=10$ GeV, $m(h_{d.2})=4$ GeV, $m(n_d)=90$ MeV, $m(\gamma_d)=100$ or 200MeV
 - Results unchanged while $m(h_{d.1/2})<10GeV$ and $BR(h_{d.2} \rightarrow n_d n_d)<0.2$

EXOT-2011-01

- Search using the $HW(\rightarrow e/\mu \nu)$ production
- Single lepton trigger, one isolated lepton, MET>25GeV,
 at least 2 electron-jets (high electromagnetic and charged fractions, ...)
- Backgrounds :
 - Fake electron-jets, from final state photon radiation and π^0 decays
 - Fully data-driven
- Main systematic:80% on the background estimation
- Similar results for m(y_d)=100 or 200MeV

Accepted by PLB

EXOT-2011-12

Higgs → hidden sector / muon jet

- Assume
 - heavier γ_d : 400MeV, with $c\tau$ ~O(40mm)
 - $m(f_{d2})=5GeV, m(f_{d1})=2GeV$
 - → muon jets, with high impact parameters (IP)
- Single production of H^0 , f_{d1} escape to the detection
 - $\gamma_d \rightarrow \mu\mu$: 45%

Selection:

- Trigger with the muon spectrometer, large IP prevent the use of inner tracker
- 2 isolated muon jets, back-to-back ($\Delta \phi$ >2), neutral
- Not too far from the primary vertex $|d_0|$ <200mm, $|z_0|$ <270mm

Backgrounds

- Prompt muon: negligible
- Multijet: data-driven
- Cosmic-ray: from data (empty bunch crossing)

Higgs → hidden sector / muon jet

EXOT-2011-12

• Main systematic uncertainties: trigger (17%), reconstruction of γ_d (13%)

Almost no background at the end:

cut	cosmic-rays	multi-jet	total background	$m_H = 100 \mathrm{GeV}$	$m_H = 140 \text{ GeV}$	data
$N_{\rm MJ}=2$	3.0 ± 2.1	N/A	N/A	135±11 ⁺²⁹ ₋₂₁	$90\pm 9^{+17}_{-13}$	871
$E_{\rm T}^{\rm isol} \le 5 {\rm GeV}$	3.0 ± 2.1	N/A	N/A	132±11 ⁺²⁸ ₋₂₁	88±9 ⁺¹⁷ ₋₁₃	219
$ \Delta \phi \ge 2$	1.5 ± 1.5	153 ± 18 ± 9	155 ± 18 ± 9	123±11 ⁺²⁶ ₋₁₉	81±9 ⁺¹⁵ ₋₁₂	104
$Q_{MJ} = 0$	1.5 ± 1.5	57 ±15±22	59 ± 15 ± 22	121±11 ⁺²⁶ ₋₁₉	79±8 ⁺¹⁵ ₋₁₂	80
$ d_0 , z_0 $	0+1.64	111±39±63	111±39±63	$105\pm10^{+22}_{-16}$	66±8 ⁺¹² ₋₁₀	70
$\Sigma p_{\mathrm{T}}^{\mathrm{ID}} < 3 \; \mathrm{GeV}$	0+1.64	$0.06 \pm 0.02^{+0.66}_{-0.06}$	$0.06^{+1.64+0.66}_{-0.02-0.06}$	$75\pm9^{+16}_{-12}$	$48\pm7^{+9}_{-7}$	0

Conclusion

- Searches with 8TeV dataset are closing in on many models
- Tighter and tighter limits on various models
 - Extra dimension
 - Compositeness

*Only a selection of the available mass limits on new states or phenomena shown

Backup

Doubly-charged Higgs boson

EXOT-2012-18

 Extensions (type II seesaw, ...) predict the Higgs sector is extended to a triplet (H°, H±, H±±)

- H^{±±}: narrow resonance, pair-produced
 - H^{±±} couples to left- or right-handed fermions
- Assume H^{±±} decay only into ee, eμ or μμ
- Single lepton trigger, at least two leptons with pT>20GeV, m(l±l±)>15GeV
- Search for signals inside windows of $\pm 4\%$ [ee] or $\pm (6+0.007.m_H)\%$ [e μ , $\mu\mu$] of the tested m_H

EXOT-2012-18

Limits depend on if the H^{±±} couples to left- or right-handed fermions

Limits on BR($H^{\pm\pm} \rightarrow ee$), BR($H^{\pm\pm} \rightarrow e\mu$), BR($H^{\pm\pm} \rightarrow \mu\mu$) vs m($H^{\pm\pm}$)

Dominant uncertainties:

- ±12% for WZ/ZZ cross-sections
- ±40% for non-prompt and charge flips
- Limited by the statistics at high mass

Di-jet mass

- Di-jet resonances predicted by many models (compositness, extra-dimensions,...)
- Selection
 - High pT jet trigger
 - 2 anti-kt jets with R=0.6, |y|<2.8, pT>150 GeV
 - $|y^*| = |y_1 y_2|/2 < 0.6$, $m_{ij} > 1$ TeV
- Background fitted from data:
 - $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4\ln x}$
 - Assume Poisson statistics $\chi^2/NDF=15.5/18=0.86$
- Search for excesses/deficits
 - Take care of Look-Elsewhere Effect

Di-jet mass

- Jet energy scale is the main uncertainty (can be as low as 4%)
- Limits expressed as function of q* mass and simplified Gaussian model

Gaussian distributions with Mass, m_G [GeV] width of 7%, 10% or 15%

Detector resolution on m_{jj} from 7% (1TeV) to 4% (3TeV)

DDDDDDDDDDDDDDDDDDD

M_{*}: cut-off scale

Various operators tested

Monojet + missing E_⊤

 Predicted by supersymmetry (gravitino), Large Extra Dimension (graviton), WIMPS ...

- Selection:
 - missing E_T (MET) trigger,
 - MET>120GeV
 - At most 2 anti-Kt jets (R=0.4), pT>30GeV, $|\eta|$ <4.5
 - Leading jet: pT>120GeV, $|\eta|$ <2
 - $\Delta \varphi$ (2nd jet, MET)>0.5
 - Lepton veto
- Main backgrounds (W/Z+jets, multijet, ...) are data-driven, apart from top and dibosons
- 4 signal regions: both MET and leading jet pT larger than 120, 220, 350, 500 GeV
 - 350 GeV working point gives the best sensitivity

Doubly-charged Higgs boson

Acceptance x Efficiency

Hidden valley

- Squark pair production
- f_d can radiate γ_d , depending on the coupling a_d , increasing the number of γ_d

- Single muon jet with at least 4 muons,
- Pairs of muon jet, with at least 2 muons,
- Or pairs of electron jets, with at least 2 electrons
- Background
 - Mainly mulitjets and gamma+jets
 - Data driven

Signal Parameters		Electron LJ	1 Muon LJ	2 Muon LJ	
α_d	$m_{\gamma_D}[{ m MeV}]$	Obs (Exp) pb	Obs (Exp) pb	Obs (Exp) pb	
0.0	150	0.082 (0.082)	-	-	
0.0	300	0.11 (0.11)	0.060 (0.035)	0.017 (0.011)	
0.0	500	0.20 (0.21)	0.15 (0.090)	0.019 (0.012)	
0.10	150	0.096 (0.10)	-	-	
0.10	300	0.37 (0.37)	0.064 (0.036)	0.018 (0.011)	
0.10	500	0.39 (0.39)	0.053 (0.035)	0.018 (0.011)	
0.30	150	0.11 (0.11)	-	-	
0.30	300	0.40 (0.40)	0.099 (0.055)	0.020 (0.012)	
0.30	500	1.2 (1.2)	0.066 (0.043)	0.022 (0.015)	

Long-lived, multi-charged particles

- Particles predicted by many models (magnetic monopoles, long-lived micro black holes, Q-balls)
- Search for 2e≤|q|≤6e particles: highly ionizing → large dE/dx
- Select events with "muon" pairs (assuming Drell-Yan production),
- Request large deviation of dE/dX in the various sub-detectors

$$S(dE/dx) = \frac{dE/dx_{track} - \langle dE/dx_{\mu} \rangle}{\sigma(dE/dx_{\mu})}$$

Limits dominated by the statistic uncertainty

Doubly-charged Higgs boson

Limits depend on if the H^{±±} couples to left- or right-handed fermions

Dominant uncertainties:

- ±12% for WZ/ZZ cross-sections
- ±40% for non-prompt and charge flips
- Limited by the statistics at high mass

Higgs → hidden sector / electron jet

- Search using the $HW(\rightarrow e/\mu \nu)$ production
- Single lepton trigger, one isolated lepton, MET>25GeV,
 - at least 2 electron-jets:
 - |η|<2, pT>30GeV
 - High electromagnetic fraction $f_{EM} > 0.99$
 - High charged fraction $f_{CH} > 0.66$
 - At least 2 tracks, likely to come from electron
- Background :
 - Fake electron-jets, from final state photon radiation and π^0 decays
 - Fully data-driven

Higgs → hidden sector / electron jet

Signal	three-ste	ep model	two-step model		
$m_H \text{ (GeV)}$	$m_{\gamma_d} = 100 \text{ MeV}$	$m_{\gamma_d} = 200 \text{ MeV}$	$m_{\gamma_d} = 100 \text{ MeV}$	$m_{\gamma_d} = 200 \text{ MeV}$	
100	$14.3 \pm 1.7 \pm 0.8$	$12.4 \pm 1.6 \pm 0.7$	$22.6 \pm 2.1 \pm 1.2$	$23.5 \pm 2.1 \pm 1.2$	
125	$11.3 \pm 1.0 \pm 0.6$	$10.7 \pm 1.1 \pm 0.6$	$16.2 \pm 1.2 \pm 0.9$	$18.1 \pm 1.4 \pm 1.0$	
140	$9.6 \pm 0.8 \pm 0.5$	$9.0 \pm 0.8 \pm 0.4$	$13.7 \pm 0.9 \pm 0.8$	$13.9 \pm 0.9 \pm 0.8$	
Background	$0.41 \pm 0.29 \pm 0.12$				
Data	1				

Main systematic:

80% on the background estimation

• Similar results for $m(y_d)=100$ or 200MeV

