Higgs -> ZZ at CMS

Si Xie

California Institute of Technology

Aspen 2013: Higgs Quo Vadis 03/12/2013

Introduction

- H → ZZ → 4I becoming the most sensitive channel at the LHC
- Low bkg & High resolution

- Fully reconstructed event
- Lots of kinematic information
- Ideal setting for measurement of properties

Si Xie

Selecting Leptons from the Higgs

- One pair of leptons mostly yields an on-shell Z
- Other pair is off-shell and typically very low in pT
 - Almost 50% have pT less than 10 GeV

A major challenge for lepton selection

- Control of bkg rate difficult at low pT
- Control of lepton selection efficiency difficult at low pT

Si Xie

Multivariate Electron selection

 Improve discrimination power by combining multiple observables using a boosted-decision tree

 BDT training is performed using signal simulation & W+Jets data sample

Si Xie

Multivariate Electron selection

- Evaluating with statistically independent signal and bkg samples, we observe significant increase in performance:
 - At same bkg rate, signal efficiency increases wrt cut-based:

Barrel
$$90\% \rightarrow 98\% \text{ pT} > 20 \text{ GeV}$$
 $70\% \rightarrow 85\% \text{ pT} < 20 \text{ GeV}$

Endcap $85\% \rightarrow 95\%$ pT > 20 GeV $50\% \rightarrow 70\%$ pT < 20 GeV

Si Xie

Muon Selection

 Large amount of material and the 3.8T solenoid yields very pure and precisely measured muons at CMS

 Very loose cuts on track quality, calorimeter features and isolation yields very low bkg rates for signal efficiencies well above 95% even for muons with p_⊤ down to 5 GeV

Si Xie

Momentum Resolution

- Once four lepton candidate events are selected, we look for a resonance in the 4-lepton mass
- Better lepton momentum resolution will act to suppress the impact of bkg

Si Xie

Electron Energy Regression

- Clustering corrections are applied using a multivariate regression trained with simulation
- Incorporates detailed information on shower shape & local geometry (gaps and crystal edges)
- Improvement on mass resolution in 4e of 25%

Si Xie

Background estimation

- Main backgrounds include
 - ZZ* production
 - "Fake" lepton bkg (mainly Z+jets)

- ZZ* bkg predicted from simulation
- "Fake" lepton bkg estimated by extrapolating in lepton ID & Isolation

03/12/2013

Si Xie

Background Control Regions

- High Mass control region dominated by continuum ZZ bkg well reproduced by Monte Carlo simulation
- Z+eµ control region dominated by fake lepton bkg agrees with data-driven estimates

Si Xie

Signal & Background

Signal and Bkg Yield For 121.5 < m4l < 130.5 GeV

Near the signal resonance: S/B ~ 2:1

H(126)	18.6		
ZZ	7.4		
Z+X & top	2.0		
Total Bkg	9.4		

Signal+Bkg	28.0	
Data	25	

Si Xie

Controlling the signal model

- J/ ψ , Y & Z decays to ee and $\mu\mu$ used to control momentum scale and resolution across $p_{_T}$ and η spectrum
- Z → 4I resonance used to cross check the signal mass model

Si Xie

Kinematic Discriminant

• To improve signal to bkg discrimination further, we make use of a discriminant based on kinematic information (angles and masses)

$$KD = \frac{P_{sig}(m_1, m_2, \vec{\Omega}|m_{4l})}{P_{sig}(m_1, m_2, \vec{\Omega}|m_{4l}) + P_{bkg}(m_1, m_2, \vec{\Omega}|m_{4l})}$$

Si Xie

Dijet Category

 To have sensitivity to both VV couplings and fermion couplings, we split events into 2 categories:

Di-jet tag

PT > 30 GeV, |n| < 4.7 Jet ID to reject fake jets from pileup

VBF signal fraction ~ 20%

Then fit for shape of discriminant based on m_{ij} and Δη_{ij}

Un-tagged

VBF signal fraction ~ 5%

Then fit using p_{T41} / m₄₁ as discriminant

Si Xie

The Higgs Resonance

	Expected	Observed	
3D (m_{AI} , K_{D} , V_{D} or p_{T}/m_{AI})	7.2 σ	6.7 σ	
2D (m _{4I} , K _D)	6.9 σ	6.6 σ	
1D (m _{4I})	5.6 σ	5.6 σ	

Si Xie

The Higgs Resonance

m₄₁ in [121.5, 130.5]

- M_{Z1} exhibits a few more events off-shell compared to SM Higgs expectation
- Statistically not very significant

Si Xie

Cross-Section Measurement

 Well compatible with SM expectations

Combined
$$\mu = 0.91^{+0.30}_{-0.24}$$

Si Xie

Mass Measurement with Event-by-Event Uncertainties

• To improve the precision of the mass measurement, we perform a fit to the estimated per-event mass uncertainty in addition to measurement.

in addition to m₄₁ and the KD

 The predicted per-event mass uncertainty is validated and corrected using Z→µµ and Z→ee data

 Additional cross-check performed by measuring the Z mass and width from Z→4I decays:

$$\Gamma_z = 2.86^{+0.51}$$
 GeV $M_z = 91.17^{+0.23}$ GeV

Consistent with PDG value of 2.4952 GeV and 91.1876 GeV

Si Xie

Lepton Momentum Scale

The leading systematic uncertainty for mass measurement

- We control momentum scale to:
 - 0.1% for muons & 0.2% for electrons with $35 < p_T < 50$
 - Up to ~1.5% for the lowest pT electrons

Si Xie

Mass Measurement

Measured mass: 125.8 ± 0.5 (stat) ± 0.2 (syst)

- Well cross-checked by alternative statistical methods
- Most sensitive mass measurement in a single channel at the LHC

Si Xie

Spin and Parity

 Use kinematic discriminator to discriminate against different signal hypotheses:

$$\mathcal{D}_{J^P} = rac{\mathcal{P}_{ ext{SM}}}{\mathcal{P}_{ ext{SM}} + \mathcal{P}_{J^P}} = \left[1 + rac{\mathcal{P}_{J^P}(m_1, m_2, \vec{\Omega}|m_{4\ell})}{\mathcal{P}_{ ext{SM}}(m_1, m_2, \vec{\Omega}|m_{4\ell})}
ight]^{-1}$$

• A two-dimensional template fit in D_{bkg} and D_{JP} is used to perform hypothesis tests against the following alternative models :

Models 0+ : SM Higgs with minimal coupling

0 : pure pseudoscalar

0⁺h : higher dimension operators (in decay amplitude)

1 :vector

1⁺ : axial vector

 2^{+}_{gg} : graviton with minimal coupling 2^{+}_{gg} : graviton with minimal coupling

Si Xie

D_{JP} for alternative models

After a cut on background discriminator > 0.5

Si Xie

Hypothesis Testing: Alternative Models

CL_s (2⁺_{m qq}): 1.5%

03/12/2013

 $CL_{s}(1^{-}) < 0.1\%$

Si Xie

Summary

- HZZ making the transition from discovery to measurement:
 - Signal significance now approaching 7σ
 - Cross section: $\mu = 0.91^{+0.30}_{-0.24}$
 - Mass : $m_H = 125.8 \pm 0.50 \text{ GeV}$
 - Excluding various alternative J^P hypotheses
- So far everything is statistically compatible with SM Higgs, but all measurements still statistically limited

Si Xie

Backup

Multivariate Electron selection

Many checks and validations were

made to ensure that...

 Bkg training sample was appropriate

 Signal training sample from simulation reasonably agrees with data

Si Xie

Lepton Selection Efficiency

Electrons

Si Xie

Controlling the signal model

- J/ ψ , Y & Z decays to ee and $\mu\mu$ used to control momentum scale and resolution across $p_{_{\!\!\!\!\!-}}$ and η spectrum
- Z → 4I resonance used to cross check the signal model
 Si Xie
 03/12/2013

Signal Region with Per-Event Error

Si Xie

Di-jet Category & Higgs p_T

Si Xie

Di-jet Category Systematics

- gg->H+2jets XS from higher order corrections: 30% normalization
- VBF cross section * Acceptance : 10% normalization
- Parton shower (generator & tunes) : shape
 - Generator: Powheg MINLO, Powheg NLO, aMC@NLO, madgraph
- Jet energy scale : shape
 - For Higgs pT spectrum:
 - Variation of resummation scale
 - Effect of finite top mass

Mass Measurement with Event-by-Event Uncertainties

Si Xie

Hypothesis Testing: Alternative Models

J^P	production	comment	expect (μ =1)	obs. 0 ⁺	obs. J^P	CL_s
0-	$gg \rightarrow X$	pseudoscalar	2.6σ (2.8σ)	0.5σ	3.3σ	0.16%
0_h^+	$gg \rightarrow X$	higher dim operators	$1.7\sigma (1.8\sigma)$	0.0σ	1.7σ	8.1%
2+ 1 1 1 1 2 1 1 2 1	$gg \to X$	minimal couplings	1.8σ (1.9 σ)	0.8σ	2.7σ	1.5%
$2^+_{mq\bar{q}}$	$qar{q} o X$	minimal couplings	1.7σ (1.9 σ)	1.8σ	4.0σ	<0.1%
1- "	qar q o X	exotic vector	2.8σ (3.1 σ)	1.4σ	$>$ 4.0 σ	<0.1%
1+	$qar{q} o X$	exotic pseudovector	2.3σ (2.6σ)	1.7σ	$>$ 4.0 σ	<0.1%

Si Xie

Searches for an additional Higgs

Si Xie