$H \rightarrow WW at CMS$

ASPEN 2013 – Higgs Quo Vadis?

Maiko Takahashi (ETH Zürich) on behalf of CMS Collaboration

$H \rightarrow WW$

Dominant channel in wide mass range

BR(H \rightarrow WW) ~20% at m_H = 125 GeV

WW \rightarrow lvlv : clean signature, sensitivity to low m_H

WW \rightarrow lvqq : large BR, powerful at high m_H

Analyses optimised for final states

- Inclusive analysis dominated by $gg \rightarrow H$
- ► 3-lepton from WH \rightarrow W WW($\tau\tau$)
- 2-lepton + 2-jet from VH and VBF

Inclusive WW $\rightarrow \ell \nu \ell \nu$ and WH in trilepton are updated using full luminosity = 4.9 + 19.5 fb⁻¹ of 2011 and 2012 data

11/03/2013

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Signature of isolated leptons and large missing ET

2 leptons with p_T > 20/10 GeV

Analysis strategies

Categorise events with different background composition

- jet multiplicity: 0 or 1-jet
- Different (eµ) or same (ee/µµ) lepton flavour pair

Signal extraction

- Template fit to kinematic distributions (eµ channel)
- Cut and count (ee/µµ channel)
 → systematics limited

11/03/2013

Background Rejection

Cut evolution

$\underline{Z/\gamma^*}:$

exclude region near m_Z in ee/µµ missing E_T based discriminant

<u>tt, tW</u>:

veto on b-jet (IP, soft muon)

<u>W+jets</u>:

tight quality lepton selection

 $W\gamma, W\gamma^*$:

conversion rejection, isolation

<u>WZ, ZZ</u>:

no extra lepton, Z veto

<u>WW</u>:

kinematic selection

11/03/2013

Background Control

Backgrounds are estimated using data-driven methods (WZ/ZZ and Wy from MC) Normalisation and shape modelling are cross checked in control regions

11/03/2013

Cut-Based Signal Extraction

 m_H dependent selection using $\Delta \phi(\ell \ell)$, $m(\ell \ell)$, $mT(\ell \ell$, $m.E_T)$ + lepton p_T 's for high m_H

WW background normalised to data in $m(\ell \ell) < 100$ GeV before final selection

11/03/2013

2D Template Fit

2D fit to extract signal & backgrounds

- $m(\ell\ell) < 200 \text{ GeV}, m_T(\ell\ell, m.E_T) < 280 \text{ GeV}$
- ▶ Use most sensitive eµ channel in 0/1-jet
- WW normalisation left floating

11/03/2013

<u>Upper Limits on σ </u>

SM $m_H = 125$ GeV as a background

Observed in 2011+2012 data

Exclusion for SM Higgs in 128-600 GeV at 95% C.L.

11/03/2013

Signal Significance

Significance at $m_H = 125 \text{ GeV}$

expected (cut-based): $5.1(2.7) \sigma$ observed (cut-based): $4.0(2.0) \sigma$

- Constraints on backgrounds from fit
- Broad excess due to mass resolution

Yields at cut-based final selection for $m_H = 125 \text{ GeV}$

		$H \rightarrow WW$	backgrounds	data
0-jet	$\ell\ell'$	89.9 ± 19.3	429.4 ± 34.2	505
	$\ell\ell$	56.3 ± 12.2	359.8 ± 37.6	421
1-jet	$\ell\ell'$	42.1 ± 12.2	208.5 ± 14.1	228
	$\ell\ell$	18.0 ± 5.2	111.3 ± 8.6	140

Signal Strength

Best fit μ at mH = 125 GeV

 $\sigma / \sigma_{SM} = 0.76 \pm 0.21$

Likelihood scan in μ over m_H show wide spread of flat minimum (m_H independent 2D fit)

 $H \rightarrow WW$ at CMS

Ņ

Consistency of Results

Signal strength by channels

Results are consistent in different categories and data taking periods

best fit $\mu (\sigma / \sigma_{SM})$				
	cut-based	2D shape		
7 TeV	0.46 ± 0.57	0.91 ± 0.44		
$8 { m TeV}$	0.79 ± 0.38	0.71 ± 0.22		
combined	0.71 ± 0.37	0.76 ± 0.21		

signal significance (exp/obs)				
	cut-based	2D shape		
7 TeV	1.7/0.8	2.5/2.2		
$8 { m TeV}$	2.6/2.1	4.7/3.5		
combined	2.7/2.0	5.1/4.0		

11/03/2013

Spin Separation

Spin 0^+ and 2^+_{min} hypotheses

- ▶ Spin 2 signal with minimum coupling modelled by JHU generator
- SM spin 0 signal using POWHEG (same as the standard analysis)

2D template fit in $m(\ell \ell)$ and $m_T(\ell \ell, m, E_T)$

Same background description and templates as the standard 2D analysis

Spin Separation

CMS Preliminary $\sqrt{s} = 7$ TeV, L = 4.9 fb⁻¹; $\sqrt{s} = 8$ TeV, L = 19.5 fb⁻¹

Maximum likelihood (L) fit

 Perform toy experiments to construct expected distribution

 $q = -2 \ ln \ (L_{2_+}/L_{0_+})$

Evaluate probabilities of a given
 (observed) q being 0⁺ or 2⁺_{min}

Fit to data for each hypotheses

Measured signal strengths

 $\sigma_{0+} / \sigma_{SM} = 0.76$

 $\sigma_{2+min} / \sigma_{SM} = 0.83$

 Expected separation using full luminosity in 2011 + 2012 (eµ only) is 1.5-1.8 σ

11/03/2013

Tri-Lepton Final State

WH, H \rightarrow WW/TT

- ▶ 3 leptons (p_T > 20/10/10 GeV)
- Tighter missing E_T and Z mass veto, and relaxed jet veto
- ► ~30% from H→ττ

Backgrounds

- ▶ WZ normalised within Z resonance
- ▶ fake leptons in Z+jet and top

Signal extraction using shape of $\Delta R(\ell^+\ell^-)$

~3 x SM sensitivity at $m_H = 125$ GeV using full dataset in 2011+2012

$VH \rightarrow qq WW$

- ► Two jets $(p_T > 30 \text{ GeV})$ from W/Z decay + WW → |v|v
- Selection based on dilepton and jet kinematics + window in m_T(*ll*, m.E_T) for different m_H
- ▶ \sim 50% gg → H contribution

Last update using 2011 data

 \blacktriangleright ~12 x SM at $m_{H} = 125 \ GeV$

8 TeV analysis in progress

<u>WW + 2 jets in VBF</u>

 $qqH \rightarrow qqWW$

- VBF selection based di-jet kinematics: Δη(jj), m(jj)
- Low statistics but high purity: $S/B \sim 1$ around $m_H = 200 \text{ GeV}$

Last update using 12.1 fb⁻¹

- Exclude SM Higgs in intermediate mass range
- $\sim 2 \times SM$ at $m_H = 125 \text{ GeV}$

Update using full luminosity in progress

$H \rightarrow WW \rightarrow \ell \nu qq$

WW $\rightarrow \ell \nu q q$

- ► High p_T lepton (25/35 GeV for μ/e) + 2/3 jets (p_T > 30 GeV) + missing E_T
- m_H-dependent likelihood discriminant
 (decay angles, WW p_T and rapidity)

Side-band fit to m(jj) to obtain W+jets normalisation and shape

11/03/2013

$H \rightarrow WW \rightarrow \ell \nu qq$

Final fit to 4-body mass, m(lvjj)

m(lv) and m(jj) are individually constrained to m_W from kinematic fit

Exclusion range for SM Higgs (5 fb⁻¹ @ 7 TeV + 12 fb⁻¹ at 8 TeV)

- expected: 220–560 GeV
- observed: 225–485, 550–600 GeV

Analysis is preparing for a search in higher $m_{\rm H}$

Summary

Analysis in $H \rightarrow WW$ decay mode at CMS

Inclusive WW $\rightarrow \ell \nu \ell \nu$ and WH in trilepton final state updated using full luminosity of 4.9 fb⁻¹ (7 TeV in 2011) + 19.5 fb⁻¹ (8 TeV in 2012)

$\mathsf{H} \to \mathsf{W}\mathsf{W} \to \ell \nu \ell \nu$

Observation compatible with SM around $m_H = 125 \text{ GeV}$

significance = 4.0σ obs, 5.1σ exp

best fit signal, $\sigma / \sigma_{SM} = 0.76 \pm 0.21$

A SPEN CENTER FOR PHYSICS

No significant additional excess up to m_H = 600 GeV

AND STATISTICS

Sensitivity to spin 0 vs spin 2 hypotheses at 1.5–1.8σ

Expect full updates of all channels and additional improvements towards summer

References

Public documents and material for the most recent results

- ► WW \rightarrow IvIv: <u>CMS-PAS-HIG-13-003</u>, <u>web</u>
- ► WW \rightarrow lvqq: <u>CMS-PAS-HIG-12-046</u>, web
- WH in trilepton: <u>CMS-PAS-HIG-13-009</u>, <u>web</u>
- ► VH \rightarrow qq WW: CMS-PAS-HIG-12-014 , web
- ▶ VBF: <u>CMS-PAS-HIG-12-042</u>, <u>web</u>

<u>Upper Limits on σ </u>

Events at Preselection

Distribution of dilepton invariant mass

Events at Cut-Based Final Selection

Distribution of dilepton invariant mass

Events at Cut-Based Final Selection

Distribution of transverse mass

 $m_{\rm T}(\ell\ell, \mathcal{E}_{\rm T}^{\rm miss}) = \left[2 p_{\rm T}^{\ell\ell} \mathcal{E}_{\rm T}^{\rm miss} \cos(\Delta\phi_{\ell\ell, \mathcal{E}_{\rm T}^{\rm miss}}) \right]^{1/2}$

2D Template Fit

11/03/2013

H→WW at CMS

8

6

5

4

3

2

15

-10

-5

0

-5

-10

WW Template

Signal significance and best fit σ/σ_{SM} obtained using different generators for the WW background template

7+8 TeV data sample					
expected/observed significance					
MC@NLO	POWHEG	MADGRAPH			
5.3/4.2	5.1/3.9	5.1/4.0			
best fit value					
MC@NLO	POWHEG	MADGRAPH			
0.82 ± 0.24	0.74 ± 0.21	0.76 ± 0.21			

Shape uncertainties on WW template

- Renormalisation and factorisation scales
- PDF
- Generator (nominal = Madgraph, alternative = MC@NLO)