

CMS SUSY results

Markus Stoye, CERN On behalf of the CMS Collaboration

Aspen "Higgs quo vadis"

- Natural SUSY (3rd generation)
- EWKinos
- Long-lived sparticles
- "classical" squark&gluinos

Focus new and 8 TeV results

Natural SUSY searches

"Natural" 3rd gen. squarks&gluinos would be produced of LHC
 Still need to find them

Direct 3rd generation

 $2 b + MET (P_T(\chi^0 + \chi^0))$ 2 b + 2 W + MET

- Significant background expected (tt, ..)
- Background predictions need to be precise!

One lepton (2b,2W,MET interpretations)

Hadronic α_T search (two b + MET interpretation)

Direct 3rd generation with RPV

RPV SUSY without MET from LSP> Typically difficult to find!

SUS-003-13 19.4 fb⁻¹ NEW

[300,600,1000,>1500] GeV

- Two extra charged leptons in stop decay
- Look for many leptons+b

Direct 3rd generation with RPV

- Stop mass ≤ 850 GeV excluded
- Further RPV non-zero couplings tested

"Light" gluinos will decay into the 3rd generation

4b, MET

4b, MET,4W (many jets and leptons)

- Spectacular signal events and tiny background
- Expect sensitivity to compressed spectra of 3^{rd} gen squarks and χ^0 mass (Energy from gluino to stop+top mass gap)

Hadronic search

Soloction:	SUS-12-024 19.4 fb ⁻¹ NEW				
 No isolated leptons 		Bin	H _T (GeV)	E _T ^{miss} (GeV)	
• N _{jets} ≥3		1	400 – 500 (HT1)	125 – 150 (MET1)	
 N_{btags} (binned) [1,2, ≥3] MET (binned) 		2	500 – 800 (HT2)	150 – 250 (MET2)	
• $H_T = (binned)$ • $\Delta \hat{\phi} = \min(\Delta \phi^i (jet^i, MET) / \sigma^i) > 4$		3	800 – 1000 (HT3)	250 – 350 (MET3)	
$\Delta \varphi \min(\Delta \varphi \; (j \circ r \; , i) \square I \;) \; r \circ \Delta \varphi \; r = 1.$		4	> 1000	> 350	

Control samples for background shape (in $3D(MET, H_T, N_{btags}))$:

(HT4)

(MET4)

- One-leptonic (M_T<100 GeV) for top backgrounds
- Z->μμ&Z->ee for Z->νν
- Inverted ∆φ for QCD

Shape corrections from control to signal region from MC

Four b-quarks + MET interpretation

Red: hadronic MET&H_T search, previous slide (19.4 fb⁻¹) Blue: hadronic α_T & H_T search (11.7 fb⁻¹)

Excluded gluino mass of 1200 GeV and LSP mass of 600 GeV

One Lepton search

One lepton channel has largest BR

For semi-leptonic tt lepton aligned to a boosted W. (cut $\Delta\phi(W,\ell)$ at 1)

One lepton search

Selection:

- Exactly one isolated lepton
- ∆φ(ℓ,W)>1
- N_{jets}≥6
- N_{btags} (binned) [=2, ≥3]
- S_T^{lep}=MET+P_T(ℓ) (binned)
 [250,350,450>] GeV

• H_T> 500 GeV

		$\mathrm{S}^{\mathrm lep}_{\mathrm{T}}$ [GeV]	control reg. data	prediction	observation
$N_{\rm b}=2$	Muons	[250,350]	141	6.00 ± 2.40 (2.23)	9
		[350,450]	24	1.37 ± 1.19 (1.12)	2
		>450	9	$0.0 \pm 0.66 \ (0.66)$	0
	Electr.	[250,350]	112	$3.83 \pm 1.84 \ (1.75)$	9
		[350,450]	28	2.74 ± 2.02 (1.86)	2
		>450	9	0.0 ± 0.42 (0.42)	0
$N_{\rm b} \ge 3$	Muons	[250,350]	28	1.92 ± 0.95 (0.84)	0
		[350,450]	13	$0.57 \pm 0.58 \ (0.52)$	0
		>450	2	0.0 ± 0.22 (0.22)	0
	Electr.	[250,350]	45	$1.89 \pm 1.03 \ (0.94)$	4
		[350,450]	7	$0.85 \pm 0.80 \ (0.70)$	0
		>450	0	$0.0 \pm 0.08 \ (0.08)$	0

- Δφ(W,ℓ) shape (R_{CS}) similar for 1,2, and ≥3 btags
- Used for main data-driven background estimate
- No excess found ☺

Four tops + Met interpretation

- Black: one lepton search 19.4 fb⁻¹
- Red: Hadronic search (19.4 fb⁻¹)
- Green: SS dileptonic search, very sensitive if LSP and gluino masses compressed; little MET required (10.5 fb⁻¹)
- Blue: ≥3 leptons (9.2 fb⁻¹)

Excluded gluino mass of 1300 GeV and LSP mass of 550 GeV

EWKino searches

Electroweakinos

- Small production cross-section
- Spectacular signature with many leptons (bosons) and MET
- Interesting for natural SUSY and split SUSY

Electroweakinos

SUS-12-022, 9.2fb⁻¹

Selection 3 *l*:

- 3D bins in MET,M(ℓ^{-,}ℓ⁺), M_T
- MET>50 GeV
- b veto

Selection 2 ℓ :

- SS lepton (3rd lep veto)
- SRI: MET>200 GeV
- SRII: MET>120 GeV,N_{jets}≤2, b veto
- SRIII: MET>120, N_{jets}=0

Electroweakinos

Further Selections:

- Z+Jets+MET
- 4 leptons

Exclusions for electroweakinos masses several hundred GeV

Long lived sparticles

Split SUSY

EXO-012-024 19.4 fb⁻¹ NEW Gluino long lived (virtual squark) and velocity < cDifferent dE/dx than SM particles in • Scalar Superparticles >10 TeV tracker Different TOF in the muon system ٠ Tracker + TOF CMS Preliminary √s=8 TeV, L=18.8 fb⁻¹ σ (pb) - gluino; 50% ĝg 10² 📥 gluino; 10% g̃g stop Gluino <3000 GeV Pair Prod. stau (NLO) 🔫 Pair Prod. stau GMSB stau (NLO) GMSB stau 10 Q=2e/3 (LO) +- Q=2e/3 Q=1e (LO) - Q=1e Higgsinos μ Electroweakinos 10⁻¹ One tuned 125 GeV 10^{-2} Higgs 10⁻³

- Preserves successes of Dark Matter and gauge coupling unification
- 0 1<u>50</u>0 Mass (GeV/c²) Gluino (long-lived) > 1.2 TeV

1000

More in EXO talk

500

10-4

Squarks and gluinos

Gluino to 1st generation

- "Classical" searches continued
- Gluino mass SMS limits more conservative than MSSM, as only a single production mechanism is considered

Natural SUSY:

- Would be produced at LHC, but not yet found.
- Limits get close to 10% tuning (0.6 TeV stop, 1.4 TeV Gluino)
- Compressed spectra or RPV could hide SUSY
 - starting to significantly constrain compressed & RPV as well
- <u>Stay tuned</u>: Further analysis in pipeline for 2013! EWKinos:
- Exclusions up to several hundred GeV EWKinos Long lived sparticles:
- Search for long lived gluinos

"Classical" squark-gluino searches:

Keep searching

Natural SUSY quite constrained, but alive