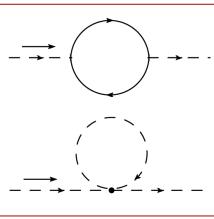


## charged and other BSM Higgs

Michele Gallinaro LIP Lisbon on behalf of the CMS collaboration

✓ Charged Higgs in top quark decays
 ✓ Doubly charged Higgs
 ✓ BSM Higgs: light pseudo-scalar, non-SM Higgs decay


Higgs Quo Vadis? – Aspen – March 10-15, 2013

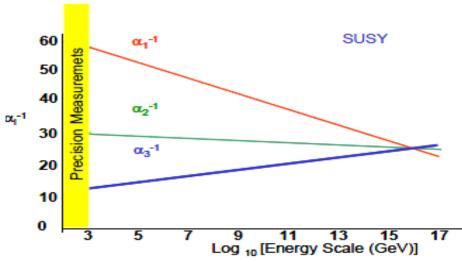
## Michele Gallinaro - "charged and other BSM Higgs" - Higgs Quo Vadis - Aspen - March 10-15, 2013

### Higgs and the SM

Contributions grow with  $\Lambda$ :  $m^2 = m_0^2 + g^2 \Lambda^2$ 

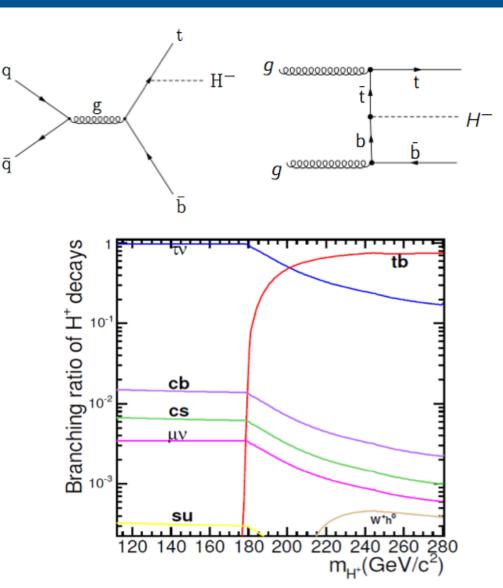
- SM is a successful theory
- Nothing prevents the SM to survive up to the Planck scale if the Higgs mass is 125 GeV. However, it is unnatural.
- If the cutoff scale  $\Lambda$  is very large, fine tuning of m<sub>H</sub> is a problem.
  - -Contributions grow with  $\Lambda$  (upper scale validity of the SM)
  - -The Higgs mass depends quadratically on  $\Lambda$ :  $m^2 = m_0^2 + g^2 \Lambda^2$
- Need to to find an explanation for light Higgs mass. It should be in the EW scale.
- Is there a symmetry that protects the Higgs mass from receiving large corrections?




2

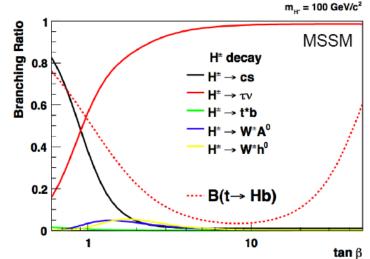
cancelation?

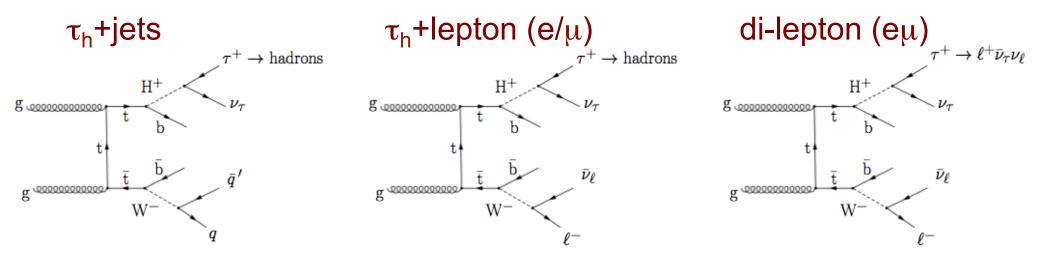
## Higgs and the SM (cont.)


#### • SUSY postulates a new symmetry between fermions and bosons

- Loops of particles and their SUSY partners have the ability to cancel the quadratic divergences in the Higgs field self-couplings, solving the naturalness problem
- SUSY foresees unification of couplings at large energy scales  $\sim 10^{15}$  GeV
- Provides DM candidates (LSP)
- It tells many nice things, but the LHC may not be able to find it
- # of experimental scenarios is large
- Here, focus on what has been done




## Charged Higgs


- Study non-SM Higgs in two mass regimes:
- m<sub>H</sub><m<sub>top</sub>
  - -Mostly produced in top quark decays
  - −Large tan $\beta$ : H<sup>±</sup>→ $\tau$ <sup>+</sup> $\nu$
  - –Small tanβ (<1): H⁺→cs
- m<sub>H</sub>>m<sub>top</sub>
  - -Produced in gluon-gluon fusion
  - -Main decays:  $H^+ \rightarrow tb$ ,  $H^+ \rightarrow \tau^+ v$
- Main backgrounds: ttbar, W+jets



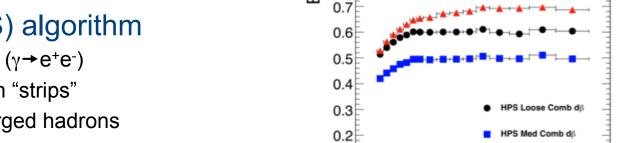
# Charged Higgs in top quark decays

- Look for charged Higgs in three final states:
  - -Tau+lepton (electron or muon)
  - -Dilepton (tau decays leptonically)
  - -Fully hadronic: tau+jets





## Tau jet identification

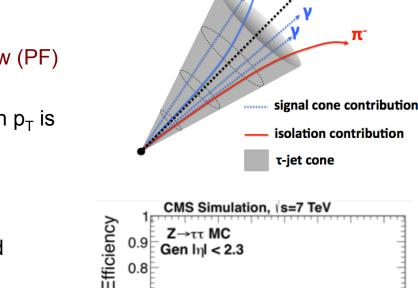

- Taus decay 65% to hadrons (i.e. jets) and 35% to leptons
  - Hadronic tau decays are reconstructed with Particle-Flow (PF)
  - narrow jet with few tracks
  - Leptonic tau decays are similar to prompt leptons (lepton  $p_{T}$  is softer, 3-body decay)

#### Hadronic tau decays

- Main background from jets/electrons
- Identified based on decay modes, charged hadrons, and ECAL deposits

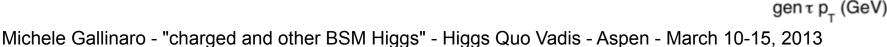
#### • ``Hadron Plus Strips'' (HPS) algorithm

- Uses photon conversion in tracker ( $\gamma \rightarrow e^+e^-$ )
- Combines PF EM particles ( $\gamma$ ,e<sup>±</sup>) in "strips"
- "strips" are combined with PF charged hadrons
- Individual decay modes are reconstructed
- Fake Rate ~3% for 70% efficiency



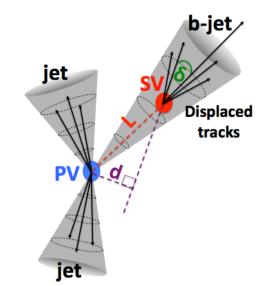

0.9

0.8


0.1

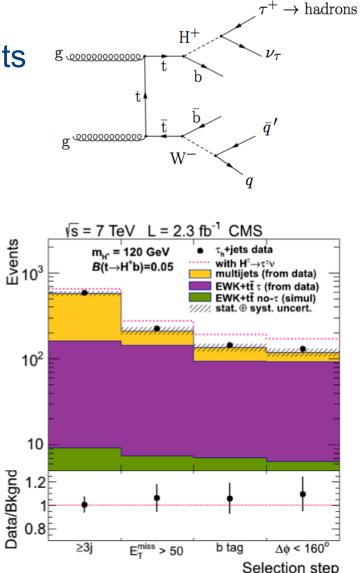
0




Gen Inl < 2.3

τ-jet axis

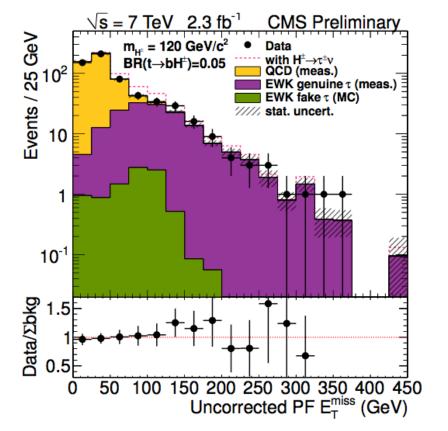



## b-tagging

- b-tagging with Track Counting High efficiency (TCHE) algorithm
- Maximizes efficiency of finding b-jets
- Relies on tracks with large impact parameter (d<sub>track</sub>)
- Tracks ordered in decreasing  $d_{track}$  significance (S<sub>IP</sub>)
- Jet b-tagged if S<sub>IP</sub>>1.7
- For  $p_T$ =50-80 GeV, tagging rate ~76% (mistag rate ~13%)

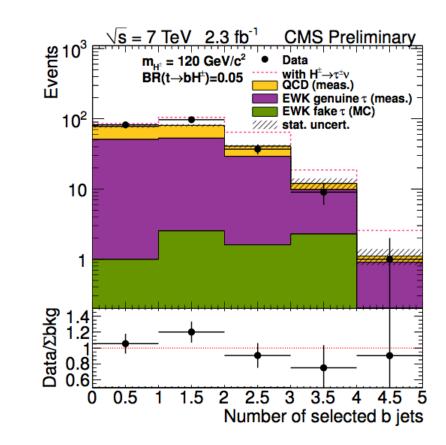


## 1) Fully hadronic: tau+jets


- Main backgrounds: QCD multi-jet, ttbar, W+jets
- Event selection:
  - -Trigger: single tau+MET trigger
  - -Require one tau jet  $p_T$ >40 GeV
  - -MET>50 GeV
  - -At least 3 jets, p<sub>T</sub>>30 GeV
  - -At least one b-tagged jet
  - $-\Delta\phi(\tau, MET) < 160^{\circ}$
  - -Reconstruct  $M_T(\tau, MET)$



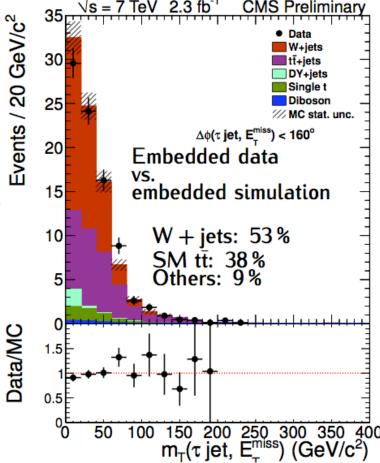
### Intermediate step: data-driven


#### After $\tau$ -jet, lepton veto, $\geq$ 3 jets

Main backgrounds well described
MET>50 GeV suppresses QCD



#### + MET cut

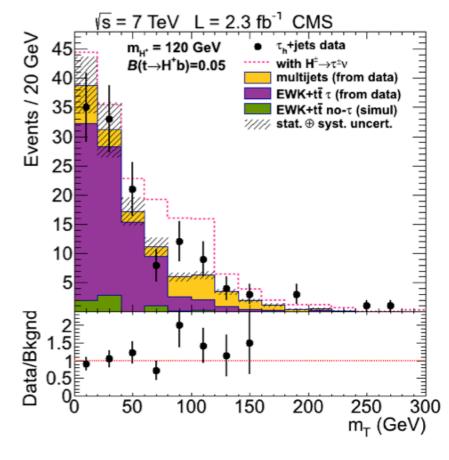

- -Small excess for 1 b-tagged jet
- -Good agreement overall



### Background measurement

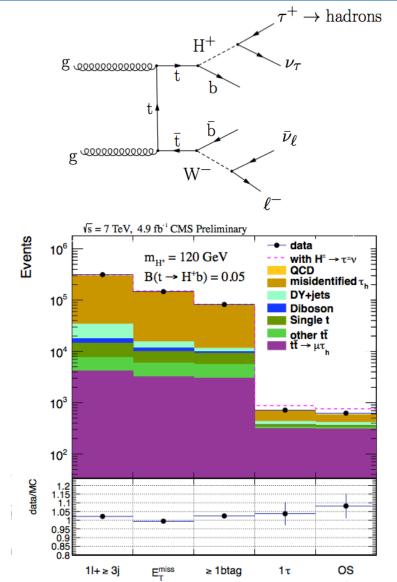
#### Multi-jet background (from data)

- –Background from QCD with a jet is misidentified as  $\tau_h$ , no genuine source of MET
- -Shape and normalization measured separately
- –Factorized in bins of tau  $\ensuremath{p_{\text{T}}}$
- EWK and ttbar with genuine taus (from data)
  - -Based on tau embedding method
  - -Select events with one isolated muon
  - -Replace muon with tau
- EWK and tau fake (e/mu/jets mis-id as tau)
  - -Small, estimated from simulation



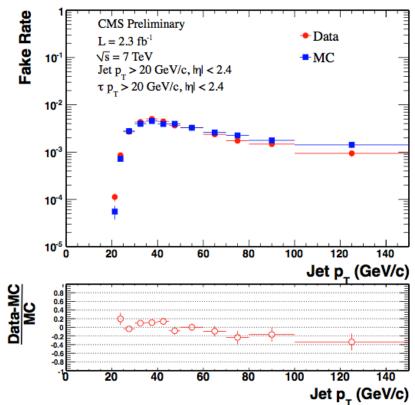

### Event yield summary

#### • After all cuts:


- -QCD multi-jet largely suppressed
- -EWK+ttbar (tau): irreducible
- -EWK+ttbar (no tau): negligible
- -Small excess around 80-100 GeV
- $M_T$  used in a CLs binned maximum likelihood ratio fit to extract limits

| Source                                                                                                                       | $N_{\mathrm{ev}}^{\tau_{\mathrm{h}}+\mathrm{jets}} \pm \mathrm{stat.} \pm \mathrm{syst.}$ |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| $\mathrm{HH} + \mathrm{WH},  m_{\mathrm{H}^+} = 120  \mathrm{GeV},  \mathcal{B}(\mathrm{t}  ightarrow \mathrm{H^+b}) = 0.05$ | $51\pm4\pm8$                                                                              |
| multijets (from data)                                                                                                        | $26\pm2\pm1$                                                                              |
| $\mathrm{EWK}+\mathrm{t}\mathrm{ar{t}}\ 	au$ (from data)                                                                     | $78\pm3\pm11$                                                                             |
| ${ m EWK}{+}{ m tar tar t}$ no- $	au$                                                                                        | $6.0 \pm 3.0 \pm 1.2$                                                                     |
| residual $Z/\gamma^* \to \tau \tau$                                                                                          | $7.0 \pm 2.0 \pm 2.1$                                                                     |
| residual WW $\rightarrow \tau \nu_{\tau} \tau \nu_{\tau}$                                                                    | $0.35 \pm 0.23 \pm 0.09$                                                                  |
| Total expected background                                                                                                    | $119\pm5\pm12$                                                                            |
| Data                                                                                                                         | 130                                                                                       |




## 2) Tau+lepton (e/µ)

- Main backgrounds: ttbar, W+jets
- Event selection:
  - -Trigger: single muon (electron+jets) trigger
  - -One isolated electron/muon  $p_T > 35(30)$  GeV
  - –At least 2 jets p<sub>T</sub>>35(30) GeV
  - -MET>45(40) GeV
  - –One tau p<sub>T</sub>>20 GeV
  - Opposite-sign (tau,lepton)
  - -At least one b-tagged jet



### **Background estimate**

- Main background: ttbar and ``fake" τ-jets
- Fake background estimated from data
  - –Select "W+≥3jet" events (1 lepton+MET+≥3jets)
  - –Apply to every jet, the ``jet→tau probability"
  - Tau fake probability evaluated from data from jets (multijet, W+jets)
  - –Parametrized as function of  $p_T$ ,  $\eta$ , jet width (R)
  - -quark vs gluon jet composition
- Good agreement with expectations



### Event yields

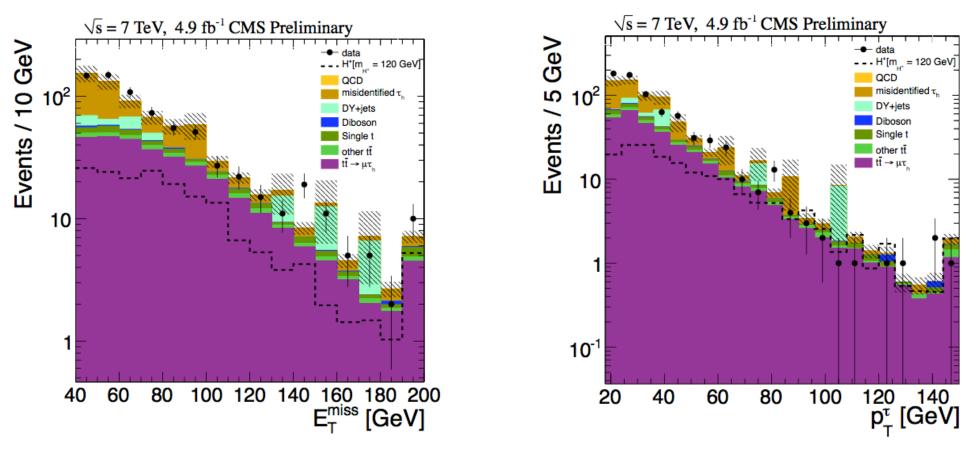
|                                        | √s = 7 Te                       | eV L=2.0 f                           | b <sup>-1</sup> CMS                                                                                                         |
|----------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Events<br>Events                       | — т <sub>н</sub> .<br>В(t-      | = 120 GeV<br>→H <sup>*</sup> b)=0.05 | • $e\tau_h$ data<br>with $H^\pm \rightarrow \tau^\pm v$<br>misidentified $\tau_h$<br>DY+jets                                |
| 10 <sup>4</sup>                        |                                 |                                      | Diboson<br>Single t<br>tt $\rightarrow$ el + X<br>tt $\rightarrow$ er <sub>h</sub> + X                                      |
| 10 <sup>3</sup>                        |                                 |                                      | $\tau_{\rm h}$ +el                                                                                                          |
| 10 <sup>2</sup>                        | -<br>-<br>-                     |                                      |                                                                                                                             |
| pug<br>1.2<br>8/                       | -                               | · ·                                  |                                                                                                                             |
| B.0 at<br>D                            | ≥3j+E <sup>miss</sup><br>T      | b tag                                | 1τ OS<br>Selection step                                                                                                     |
| Stub<br>201 E                          |                                 | = 120 GeV<br>→H⁺b)=0.05              | • $\mu \tau_h \text{ data}$<br>with $H^{\pm} \rightarrow \tau^{\pm} v$<br>misidentified $\tau_h$<br>DY+jets<br>Diboson      |
| 10 <sup>4</sup>                        |                                 |                                      | Single t<br>$t\bar{t} \rightarrow \mu l + X$<br>$t\bar{t} \rightarrow \mu r_{h} + X$<br>$'////, stat. \oplus syst. uncert.$ |
| 10 <sup>3</sup>                        |                                 |                                      | τ <sub>h</sub> +mu                                                                                                          |
| 10 <sup>2</sup><br>u6 1.2              | -<br>-<br>-                     |                                      |                                                                                                                             |
| Data/Bkgnd<br>Data/Bkgnd<br>Data/Bkgnd | ∮<br>≥3j+E <sup>miss</sup><br>T | t<br>b tag                           | 1τ OS<br>Selection step                                                                                                     |

#### $e\tau_h \mu \tau_h$

| $N_{\rm ev}^{{\rm e}\tau_{\rm h}}\pm {\rm stat.}\pm {\rm syst.}$ | $N_{\rm ev}^{\mu \tau_{\rm h}} \pm { m stat.} \pm { m syst.}$                                                                                                                          |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $51\pm3\pm8$                                                     | $89 \pm 4 \pm 13$                                                                                                                                                                      |
| $54\pm 6\pm 8$                                                   | $89\pm9\pm11$                                                                                                                                                                          |
| $100\pm3\pm14$                                                   | $162\pm4\pm23$                                                                                                                                                                         |
| $9.0\pm0.9\pm1.8$                                                | $13.0 \pm 1.2 \pm 2.5$                                                                                                                                                                 |
| $4.8\pm1.8\pm1.3$                                                | $0.7\pm0.7\pm0.7$                                                                                                                                                                      |
| $17.0 \pm 3.3 \pm 3.0$                                           | $26.0 \pm 4.3 \pm 6.1$                                                                                                                                                                 |
| $7.9\pm0.4\pm1.1$                                                | $13.5 \pm 0.5 \pm 1.9$                                                                                                                                                                 |
| $1.3\pm0.1\pm0.2$                                                | $2.0\pm0.2\pm0.3$                                                                                                                                                                      |
| $194\pm8\pm20$                                                   | $306\pm11\pm32$                                                                                                                                                                        |
| 176                                                              | 288                                                                                                                                                                                    |
|                                                                  | $51 \pm 3 \pm 8$ $54 \pm 6 \pm 8$ $100 \pm 3 \pm 14$ $9.0 \pm 0.9 \pm 1.8$ $4.8 \pm 1.8 \pm 1.3$ $17.0 \pm 3.3 \pm 3.0$ $7.9 \pm 0.4 \pm 1.1$ $1.3 \pm 0.1 \pm 0.2$ $194 \pm 8 \pm 20$ |

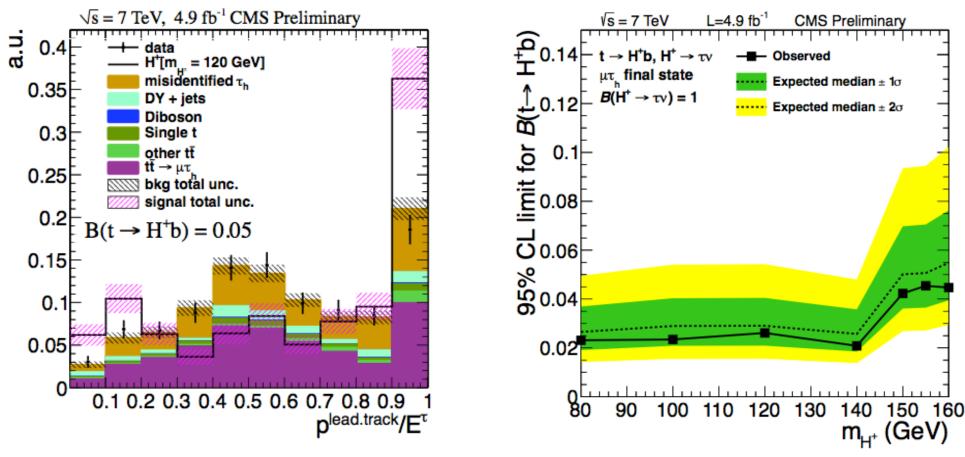
### Event yields: tau+muon update

- Dominant background is from fakes
- Tau dilepton ttbar events: irreducible
- Other backgrounds are small


| Source                                                              | $N_{events}$ (± stat. ± syst.) |
|---------------------------------------------------------------------|--------------------------------|
| HH+HW, $m_{H^+}$ =120 GeV, $\mathcal{B}(t \rightarrow H^+b)$ =0.05  | $179.3 \pm 8.7 \pm 22.1$       |
| au fakes (from data)                                                | $222.0 \pm 11.4$               |
| $t\bar{t}  ightarrow WbWb  ightarrow (\mu  u b) (	au_h  u b)$       | $304.7 \pm 2.8 \pm 25.9$       |
| $t\bar{t} \rightarrow WbWb \rightarrow (\ell \nu b) \ (\ell \nu b)$ | $21.4\pm0.7\pm6.9$             |
| $Z/\gamma^*  ightarrow ee, \mu\mu$                                  | $0.4\pm0.4\pm0.1$              |
| $Z/\gamma^* 	o 	au	au$                                              | $50.6 \pm 17.6 \pm 20.7$       |
| Single top                                                          | $26.6 \pm 1.2 \pm 3.3$         |
| VV                                                                  | $4.4\pm0.5\pm0.7$              |
| Total expected from SM                                              | $630.1 \pm 17.9 \pm 46.9$      |
| Data                                                                | 620                            |



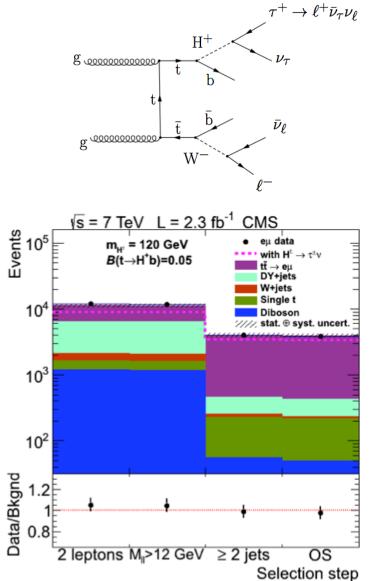
### Tau+muon final state


#### After full event selection:

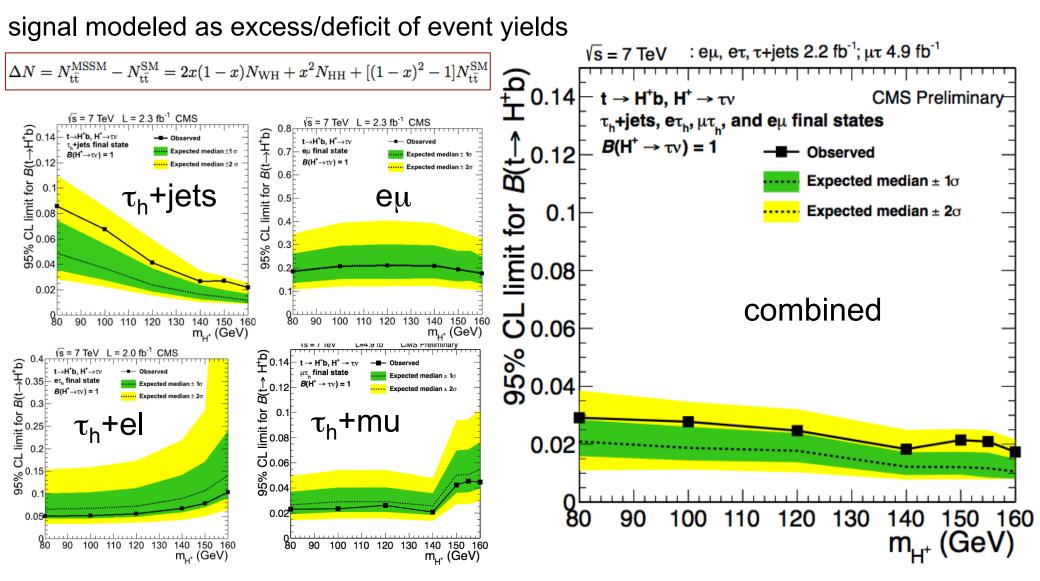
- MET and tau  $p_{\rm T}$  distributions
- Good agreement data vs backgrounds



### Tau+lepton: limits (cont.)


- Use R variable in the limit extraction: binned maximum-likelihood fit
- Tau fake component is data-driven, includes uncertainties

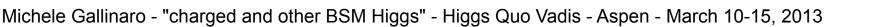


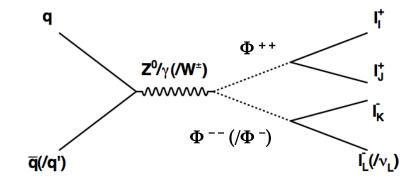

## 3) Dilepton (eµ) final state

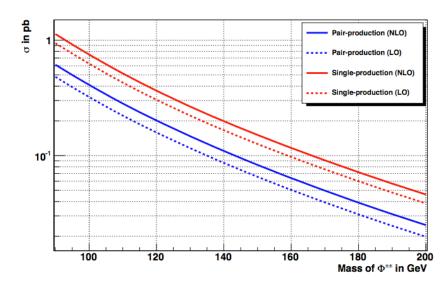
- Tau decays leptonically
- Main background: ttbar
- Event selection:
  - $-e\mu$  trigger: ele+mu (p<sub>T</sub>>20 GeV)
  - -At least 2 jets (p<sub>T</sub>>30 GeV)
- Expect deficit of events (softer  $\tau p_T$ )

| Source                                                                                              | $N_{ m ev}^{ m e\mu}\pm{ m stat.}\pm{ m syst.}$ |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| HH+WH, $m_{\mathrm{H^+}} = 120\mathrm{GeV},\mathcal{B}(\mathrm{t}  ightarrow \mathrm{H^+b}) = 0.05$ | $125\pm9\pm13$                                  |
| $t\overline{t}$ dileptons                                                                           | $3423\pm35\pm405$                               |
| other $t\bar{t}$                                                                                    | $23\pm3\pm3$                                    |
| $\mathrm{Z}/\gamma^* 	o \ell\ell$                                                                   | $192\pm12\pm19$                                 |
| W+jets                                                                                              | $14\pm 6\pm 2$                                  |
| single top quark                                                                                    | $166\pm3\pm18$                                  |
| diboson                                                                                             | $48\pm2\pm5$                                    |
| Total expected background                                                                           | $3866\pm38\pm406$                               |
| Data                                                                                                | 3875                                            |



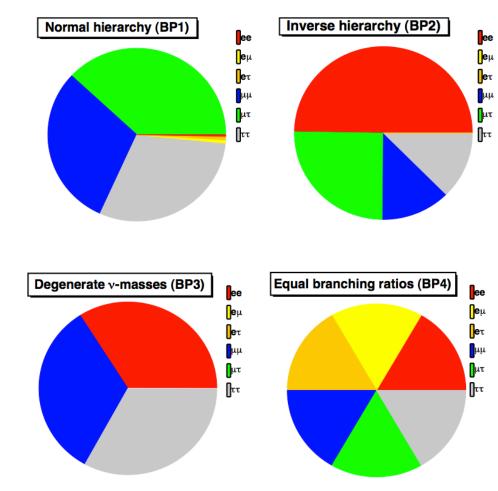

### **Combined limits**





## **Doubly charged Higgs**

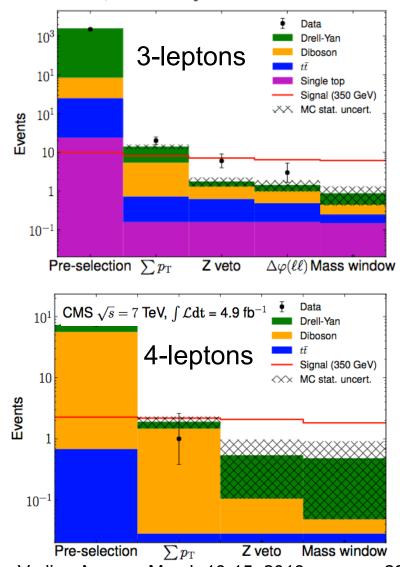
#### EPJC 72 (2012) 2189

- Model
  - SM is extended with scalar triplet ( $\Phi^{++}$ ,  $\Phi^{+}$ ,  $\Phi^{\circ}$ )
  - Triplet responsible for neutrino masses
  - Search for doubly- and singly-charged
  - -DY pair production is most common
  - $\Phi^{\rm ++}$  decays to SS lepton pair of any flavor combination
- Associated production
  - $-pp \rightarrow W^* \rightarrow \Phi^{++} \Phi^{-}$
  - xsection at LHC is ~2x higher than pair production
  - -VBF channel: pp $\rightarrow W^+W^- \rightarrow \Phi^{++}+jets$  (difficult)
- Search with ≥3 leptons of any flavor
  - Search for excess of events in one or more flavor combinations of SS lepton pairs







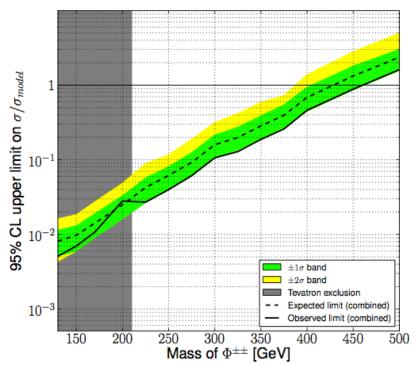


### **Experimental signature**

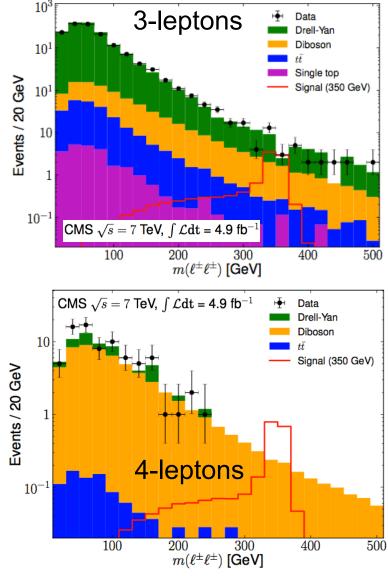
- Couplings directly linked to neutrino mass matrix
  - As we don't know v mass matrix, we don't know BRs
  - Search for BR( $\Phi^{++}\rightarrow I^+I^+$ )=100% (I=e, $\mu$ , $\tau$ )
  - Four additional model-dependent points
- Look for 3 or 4 prompt isolated leptons in final state
- Unlike SM, combination of interest is SS
- Due to flavor non-conservation, final states can be combination of any flavor
- Fully inclusive search



### Analysis strategy

- Analysis separated in categories
  - Light leptons and  $\tau_h$
  - $-\Sigma p_T$ , Z veto,  $\Delta \phi$ , MET
- Three leptons
  - Separate signal and bkg based on significance
  - III and  $I\!/\!\pi_h$
- Four leptons
  - -Substantially reduced backgrounds
  - –IIII, III $\tau_h$ , II $\tau_h\tau_h$  final states





CMS  $\sqrt{s} = 7$  TeV,  $\int \mathcal{L} dt = 4.9$  fb<sup>-1</sup>

### Inclusive search in leptonic final states

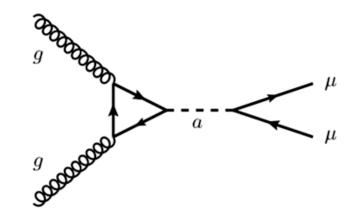
#### • Event selection:

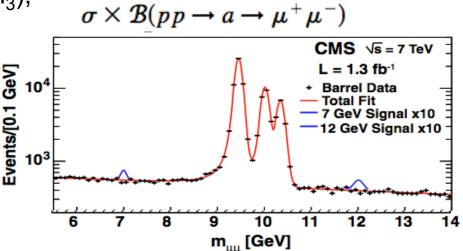
- -double lepton trigger ( $p_T$ >17,8 GeV) -electron/muon/tau:  $p_T$ >15/5/15 GeV
- Backgrounds are small
  - -determined from data (side-bands/"ABCD")



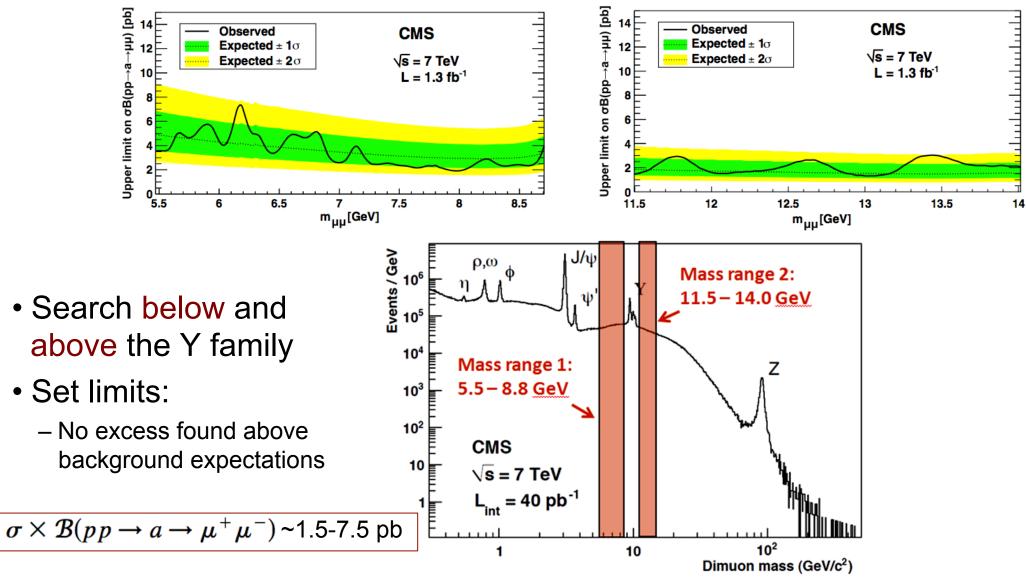


#### Light pseudo-scalar: $a \rightarrow \mu^+ \mu^-$ PRL 109,121801(2012)


#### Low-energy SUSY

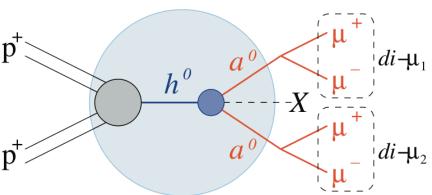

- -solution to hierarchy problem
- -provides DM candidate
- -provides unification of gauge couplings

#### Predicted in NMSSM


- -Expands MSSM: 3 CP-even scalars  $(h_1, h_2, h_3)$ , 2 CP-odd  $(a_1, a_2)$ , 2 charged  $(H^{\pm})$

- -Add scalar singlet to MSSM family Large cross section:  $gg \rightarrow a \rightarrow \mu^+ \mu^-$  Search for general light pseudo-scalar  $u^{+}\mu^{-}$ Higgs (a) near Y resonance



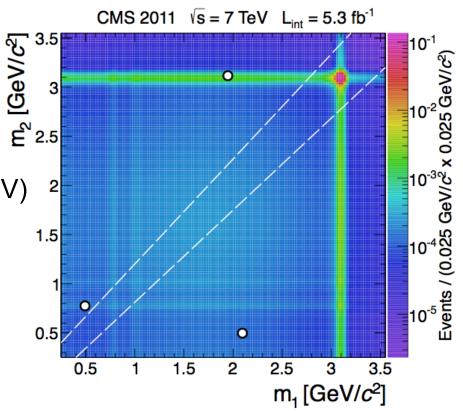



### Constraints on $a \rightarrow \mu^+ \mu^-$ production



# non-SM Higgs decay: h $\rightarrow$ 2a $\rightarrow$ 4 $\mu$

- Explore non-SM decays of the Higgs boson (h)
  - include production of two new light boson (a<sup>0</sup>)
- - Predicted in several models (NMSSM, dark SUSY)
  - Complementary to direct SM Higgs searches
  - Sensitivity to new decays with small BRs that can't be excluded in standard Higgs measurements without much larger amounts of data
- Selection designed to have low sensitivity to model details
  - Find low mass muon pairs ("dimuons")
  - Require each event to have two dimuons
  - Require two dimuon masses to be consistent
- Results
  - Limits on production rates, benchmark models

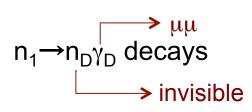


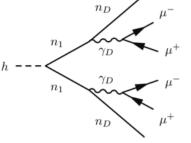

## Upper limit cross section

- Backgrounds from bbbar, prompt double J/ $\Psi$  production
- Event selection:
  - Trigger: double muon (17, 8 GeV)
  - -At least 4 muons: p<sub>T</sub>>8 GeV (p<sub>T</sub><sup>lead-mu</sup>>17GeV)
  - Mass pairs should be consistent (<5 GeV)
  - Study detector resolution with low mass SM resonances

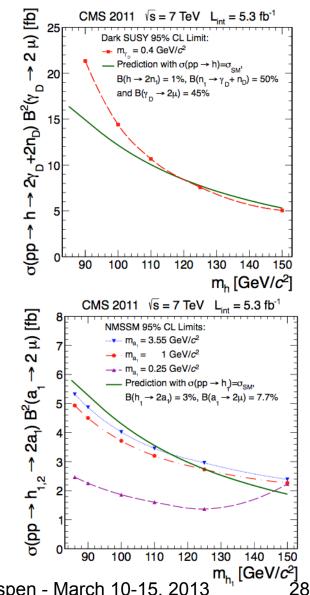
#### Results

- observe 3 events in off-diagonal region, consistent with bkg expectations
- Signal region: zero events (1.0±0.5 bkg)





 $\Rightarrow \text{ model-independent upper limit} \\ \text{of } 0.78 \pm 0.05 \text{ fb on the product of} \\ \text{cross-section x BR x acceptance} \\ \end{cases}$ 

### NMSSM and Dark SUSY Limits


Results interpreted in NMSSM and dark SUSY

Dark SUSY: h decay to pair of neutralinos
 (n<sub>1</sub>): LSP





- NMSSM:  $h_{1,2} \rightarrow 2a_1; a_1 \rightarrow 2\mu$
- Compare to SM Higgs cross section



## Summary

- Charged Higgs searches in top quark decays
  - Stringent limits
  - Light H<sup>+</sup> searches limited by systematics
- Other BSM searches show no indication of deviations
  - Doubly charged, light pseudo-scalar (a $\rightarrow$ µµ), non-SM Higgs decays
- Searches provide no hints for BSM yet



