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1 Extra dimensions: warm up

The idea behind extra dimensional theories is to extend space time to include more than 3
spacial dimensions. As we can see with our own eyes, the world has only 3 space dimensions,
thus the extra ones must be hidden: this can be done either by compactifying them (making
them smaller than our microscope’s resolution), or assume that the particles we are made of
are bounded to live on a 4-dimensional subspace (brane).

Another choice is the metric of the space: while the 4 visible dimensions are basically
flat (Minkowski metric), the extra ones may be curved. Let’s start with the simplest case of
a compact flat extra dimension: what are the physical implications of its existence?

1.1 A 5D scalar field

The action is simply extended to

Ss =

∫
d5x (∂MΦ)†∂MΦ−M2Φ†φ , (1.1)

where M = µ, 5 labels the 5 directions in space-time, and

Φ = Φ(xµ, x5) . (1.2)

From the above action we can derive the usual Klein-Gordon equation of motion:

−∂M∂MΦ−MΦ = −∂µ∂µΦ + ∂2
5Φ−MΦ = 0 . (1.3)

The simplest compact space is a circle, i.e. a space where we impose periodic conditions on
the fields:

Φ(xµ, x5 + 2πR) = eiαΦΦ(xµ, x5) ; (1.4)
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in general a non-zero phase αΦ (Scherk-Schwarz phase) may be imposed, for simplicity here
we will only consider periodic fields and we will set αΦ = 0. If we want to go to momentum
space, along the visible directions the usual Fourier transform applies; on the other hand,
along x5 we need to Fourier expand in a series of functions (the domain of the function of
x5 is finite!):

Φ(xµ, x5) =

∫
d4p

(2π)4

∑
n

fn(x5)ϕn(pµ) ; (1.5)

where pµ is the usual 4D momentum, fn is a complete set of functions on the compact
extra space (wave functions), and the “coefficients” ϕn(pµ) can be interpreted as 4D fields
(Kaluza Klein modes). Plugging this expansion in the equation of motion, we obtain a set
of equations for fn:

(p2 −M2)fn − ∂2
5fn = 0 (1.6)

whose solutions are

sin
√
p2 −M2x5 , cos

√
p2 −M2x5 . (1.7)

The periodicity implies that √
p2 −M2 = n/R (1.8)

where n is positive integer. If we interpret p2 as the 4D mass of the 4D field

p2 = m2
n =

n2

R2
+M2 = n2m2

KK +M2 , mKK = 1/R . (1.9)

The complete expansion of the field is then (where we have properly normalised the wave
functions fn)

Φ(pµ, x5) =
1

2πR
ϕ0 +

∞∑
n=1

cosnx5/R

πR
ϕn,c +

∞∑
n=1

sinnx5/R

πR
ϕn,s , (1.10)

with effective 4D action

Ss =

∫
d4x (∂µϕ0)†∂µϕ0 +

∑
n

(∂µϕn,c/s)
†∂µϕn,c/s − (M2 + n2m2

KK)ϕ†n,c/sϕn,c/s . (1.11)

1.2 Orbifold

Starting from the circle, more spaces can be defined by using the symmetries of the circle
itself: one can in fact identify points mapped one into the other by such symmetry. For
instance, the circle is invariant under a mirror symmetry with respect to any diameter:
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x5 → −x5. If a circle is defined for x5 ⊂ [−πR, πR), then the mirror symmetry identifies
positive and negative points. The resulting space (the interval) is defined on x5 ⊂ [0, πR].

On the fields, the orbifold projection means that each field must satisfy:

Φ(pµ,−x5) = ±Φ(pµ, x5) . (1.12)

Each field is characterised by a sign choice; the wave functions that do not respect the
transformation properties are then removed.

Φ+ =
1

2πR
ϕ0 +

∞∑
n=1

cosnx5/R

πR
ϕn,c ; (1.13)

Φ− =
∞∑
n=1

sinnx5/R

πR
ϕn,s . (1.14)

Note that the massless n = 0 mode is only present for Φ+; both choices have a tower of
massive states with the same mass but different wave functions.

1.3 A 5D vector (gauge) field

The action can be written as (for an abelian gauge group):

Sgauge =

∫
d5x − 1

4
FMNF

MN =

=

∫
d5x − 1

4
FµνF

µν +
1

2
Fµ5F

µ
5 =

=

∫
d5x − 1

4
FµνF

µν +
1

2
∂µA5∂

µA5 +
1

2
∂5A

µ∂5A
µ − ∂µA5∂5A

µ . (1.15)

The µ5 term generate a mixing between the 4D vector components Aµ and the 4D scalar
term A5: this is similar to the mixing we obtain in the SM between the massive vectors
and the Goldstone components of the Higgs field. To simplify the equations, we can add a
“gauge fixing” term to the action, which is a total derivative that can cancel out the mixing
term and decouple the vector and the scalar. The extra dimensional Rξ gauge fixing term is
then:

SGF =

∫
d5x − 1

2ξ

(
∂µA

µ − ξ∂5A
5
)2
. (1.16)

Sgauge+GF =

∫
d5x − 1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 +
1

2
∂5A

µ∂5A
µ + (1.17)

+
1

2
∂µA5∂

µA5 −
ξ

2
(∂5A

5)2 . (1.18)
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Vector

The equation of motion for the vector part is

∂µFµν +
1

ξ
∂ν∂

µAµ − ∂2
5Aν = 0 . (1.19)

We can Fourier transform and expand the field as before

Aµ(pµ, x5) =
∑
n

fnA
n
µ , (1.20)

and, assuming that the 4D fields Anµ satisfy the usual 4D equation of motion in ξ gauge for
a massive state,

∂µFµν +
1

ξ
∂ν∂

µAµ = −p2Aν . (1.21)

we have the following equation for the wave functions

(p2 + ∂2
5)fn = 0 , (1.22)

which is the same as in the scalar case (but with M = 0). The final KK expansion is therefore
analogous to the scalar one. The spectrum contain one massless gauge bosons (thus in 4D
gauge symmetries are respected), and a tower of massive states. Where do the massive state
get the longitudinal polarisation, as there is no Higgs field here?

Scalar (and the extra dimension “Higgs” mechanism)

The equation of motion for the A5 scalar reads:

(∂µ∂
µ − ξ∂2

5)A5 = 0 , (1.23)

which is similar to the one for a 5D scalar, with the exception of the parameter ξ. After the
usual Fourier expansion, the equation for the wave functions is:(

p2

ξ
+ ∂2

5

)
fn = 0 , (1.24)

thus the expansion is the same as above, except for the substitution p2 → p2

ξ
.

The masses will therefore be

m2
n = ξn2m2

KK , (1.25)

which look like the masses of a Goldstone boson in the “Higgs” mechanism. Note that the
only mode whose mass is independent on ξ is the zero mode n = 0. What we learn, therefore,
is that the massive modes of the scalar polarisation A5 are the Goldstone bosons eaten up
by the massive vectors! The only physical mode is the n = 0 mode (that corresponds to the
massless vector).
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Gauge invariance

The 5D action is invariant under a generalised gauge transformation:

AM → AM + ig∂Mα(xµ, x5) . (1.26)

The local gauge parameter α must satisfy the same properties as the gauge field AM , thus it
also is a periodic function of x5. We can therefore Fourier expand both Aµ and α, and write
down 4D gauge transformations for each KK mode:

Anµ → Anµ + ig∂µα
n(xµ) . (1.27)

Naively, we would expect the presence of an infinite number of gauge groups, however,
as shown in the mass spectrum, the extra polarisation “spontaneously breaks” the gauge
invariance associated with the massive modes; only the 4D gauge invariance of the massless
mode is (explicitly) preserved.

Caveat: the Fourier expansion of the gauge transformation properties is a bit naive, one
should really consider the gauge transformation on 5D fields!

Orbifold

We can now extend the analysis to orbifolds. As before, the field must be associated with a
parity under the orbifold symmetry. However, the parities of the Aµ and A5 components are
related to each other by the fact that they belong to a vector! So if the orbifold symmetry
is x5 → −x5 (change sign to the 5th component of the vector but not to the other 4), the
parity assignment for the 5D vector must be

Aµ(−x5) = ±Aµ(x5) , A5(−x5) = ∓A5(x5) , (1.28)

in other words their parity must be opposite!
For a + vector, the scalar is -: in this case, the vector contains a massless zero mode and

massive vectors (with cos wave function), while the scalars only contain a tower of Goldstone
bosons (with wave function sin).

For a - vector, the scalar is -: now the vectors only contain a tower of massive states
(sin), while the scalars contain a physical massless scalar and a tower of Goldstone bosons
(cos).

Note also that for - vectors, the 4D gauge symmetry is broken, as signalled by the absence
of a massless vector in the KK expansion! However, a massless scalar is present!

1.4 A 5D fermion

The Dirac Gamma matrices must be generalised to 5D, i.e. we need to define a set of 5 (not
4) anticommuting matrices. The natural choice is to promote γ5 to the role of the gamma
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matrix for the 5th direction. The minimal spinor is now a 4-component one, and it is not
possible to define chiral projections. The action is

Sf =

∫
d5x iΨ̄ΓM∂MΨ−mΨ̄Ψ , (1.29)

where the 5D fermion can be described in terms of 2 2-component Weyl fermions:

Ψ =

(
χ
η̄

)
. (1.30)

In terms of Weyl fermions, the action reads

Sf =

∫
d5x − iχ̄σ̄µ∂µχ− iησµ∂µη̄ − χ̄∂5η̄ + η∂5χ+m(χ̄η̄ + ηχ) ; (1.31)

from which we can derive the following equations of motion

−iσ̄µ∂µχ− ∂5η̄ +mη̄ = 0 , (1.32)

−iσµ∂µη̄ + ∂5χ+mχ = 0 . (1.33)

The KK decomposition is in the form

χ =
∑
n

gn(x5)χn(xµ) , η̄ =
∑
n

fn(x5)η̄(xµ) , (1.34)

where χn and η̄n are usual 4D Weyl spinors.
The usual procedure can be followed: we can plug the expansions in the equations of

motion, use the 4D equations of motion to replace derivatives with the 4D momenta and
combine the two equations. We obtain that both fn and gn must satisfy the same equations
of motion as a massive scalar field!

Note that on a circle, both chiral fields η and χ have a massless mode! In order to have a
massless spectrum that corresponds to the SM fermions, we need to remove one or the other
in order to have a chiral spectrum!

Orbifold

The orbifold symmetry changes sign to x5: in order for the kinetic term to be invariant, the
parities of χ and η̄ must be opposite! This implies that only one of the two chiralities will
have a zero model.

The massive modes of the two chiralities will be combined to form a massive Dirac
fermion. The orbifold is thus an essential ingredient for Model Building!

Note also that the mass term is forbidden exactly for the same reason.
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Odd mass terms

Another possibility is to assume that the mass term is odd under the orbifold symmetry: this
is not entirely inconsistent, because the fundamental domain of the orbifold is an interval
where the mass is uniform. So, let’s force the presence of a mass term!

The most obvious problem we encounter is that the mass term would like to couple the
two zero modes to form a Dirac fermion of mass m, however one of the two chiralities is
removed.

If we remove the η chirality, the equations of motion for the zero mode reduce to:

∂5g0 +mg0 = 0 , g0(x5) ∼ e−mx5 . (1.35)

The wave function of a left-handed mode, therefore, is exponentially localised toward the
x5 = 0 boundary of the space (for m > 0)

For right-handed zero modes

−∂5f0 +mf0 = 0 , f0(x5) ∼ e+mx5 ; (1.36)

thus it is localised toward the other boundary.
This trick allows us to localise the massless modes toward one or the other boundary.

2 First model: Gauge-Higgs Unification in flat space

Because of the chiral SM fermions, we need to use an orbifold. Our goal is to build a model
where the Higgs is the A5 of a bulk gauge boson; in order to have couplings between the
Higgs and the electroweak gauge bosons, the SU(2)×U(1) gauge bosons and the Higgs should
be unified into a single gauge group G, with the following features:

- G must contain at least 3SU(2) + 1U(1) + 4H = 8 generators;

- at the level of zero modes, only SU(2)×U(1) must survive, i.e. the orbifold must break
G→SU(2)×U(1);

- breaking a gauge group corresponds to assign a parity + for the unbroken generators,
and - for the broken ones. This must be done in a consistent way, i.e. a gauge boson
can be mapped into itself up to a gauge transformation:

Aµ(−x5) = UAµ(x5)U † ,

where U is a gauge transformation of G. In particular, this preserves the rank of the
original group G and the rank of the preserved gauge group;

- at zero mode level, a doublet of SU(2) with non-zero hypercharge should survive.
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An attractive possibility is to use SU(3): it has rank 2 (like SU(2)×U(1)), 8 generators
and it can be broken to SU(2)×U(1) with

U =

 −1 0 0
0 −1 0
0 0 1

 . (2.1)

The parity assignments of the gauge components will therefore be: + + −
+ + −
− − +

 ; (2.2)

The 2×2 block corresponds to SU(2) generators, the + in the lower corner to a U(1) gen-
erators, finally the 4 components with parity - will provide the Higgs candidate, as they
transform like a doublet under SU(2). The extra polarisation will have opposite parities.

Spectrum

The spectrum of vector bosons will contain SU(2) gauge bosons W± and W 3, which contain
a zero mode and a tower of massive modes; a U(1) gauge boson BB with same spectrum as
the SU(2) ones; two charged gauge bosons, with the same quantum numbers as the Higgs,
C± and D±, that have no zero mode and just a tower of massive modes. They are embedded
in the SU(3) structure as:

Aµ =


1
2
W 3
µ − 1√

12
Bµ

1√
2
W+ 1√

2
C+

1√
2
W− −1

2
W 3
µ − 1√

12
Bµ

1√
2
D+

1√
2
C− 1√

2
D− 2√

12
Bµ

 . (2.3)

The scalar sector will only contain a massless doublet of SU(2), that well play the role of
the Higgs, embedded in SU(3) as:

A5 =

 0 0 1√
2
φ+

0 0 1√
2
φ0

1√
2
φ− 1√

2
φ∗0 0

 . (2.4)

At three level, the Higgs will not have any potential, because it can only come from the
gauge boson action:

S =

∫
d5x − 1

2
TrFMNF

MN , FMN = ∂MAN − ∂NAM + g(AMAN − ANAM) . (2.5)

No A2
5 nor A4

5 terms are present in this action! So, the potential for the Higgs is generated at
one loop. We expect it to be finite, because the tree level action does not contain a counter-
term either for the mass or quartic coupling! Note that this is true at all perturbation
orders!
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Potential issues

- the Higgs field is a gauge boson, so it couples to all particles with strength g. What
about fermion masses? To obtain masses below mW , we can use the mass trick to
localise the light quarks towards the two boundaries of the space, in order to reduce
the overlap to the Higgs.

- How about the top mass? This is a crucial issue, as the localisation can only suppress
the couplings with respect to g. One may use gauge group factors to enhance the
coupling.

- how about the Higgs mass? The potential is one-loop generated, so the mass should
be rather small. The precise value depends on the details.

2.1 The Higgs potential

The Higgs potential is generated completely at one loop. Only the zero mode will be sensitive
to the eventual negative mass, thus the vacuum solution must be independent on the extra
coordinate x5. This implies that no tree level mixing with the heavy gauge bosons will be
generated! The reason is that modes with different mass have orthogonal wave functions.

The Hosotani mechanism

Let’s assume that the Higgs does develop a VEV that breaks SU(2)×U(1) → U(1): the
vacuum will have the SU(3) embedding

〈A5〉 =

 0 0 0
0 0 1√

2
〈φ0〉

0 1√
2
〈φ0〉 0

 . (2.6)

It is always possible to find a gauge transformation Ω(x5) such that

〈A′5〉 = Ω(x5)〈A5〉Ω†(x5) = 0 ; (2.7)

so that the Higgs VEV disappears from the action. Expanding at leading order in the gauge
transformation parameter:

〈A5〉+ i∂5(αx5)

 0 0 0
0 0 i
0 i 0

 = 0 , α =
1√
2
〈φ0〉 . (2.8)

The same transformation must be applied to the gauge vectors:

A′µ = Ω(x5)AµΩ†(x5) . (2.9)
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Figure 1: One-loop Higgs potential in two variations of the model, distinguished by the
representations of SU(3) the SM fermions are embedded in. [hep-ph/0510366]

What does it change in the theory? The action is invariant, however the periodicity condition
on the field A′µ is different from before:

A′µ(x5 + 2πR) = Ω(x5 + 2πR)Aµ(x5)Ω†(x5 + 2πR)

= Ω(x5 + 2πR)Ω†(x5)A′µ(x5)Ω(x5)Ω†(x5 + 2πR) . (2.10)

Working out the algebra, we find that this is equivalent to imposing different Scherk-Schwarz
phases on the different components of the SU(3) adjoint. Note that the gauge transformation
is equivalent to a SS phase only in the orbifolds that do allow for SS phases.

The spectrum for the W± bosons will not be modified by the gauge transformation, and
it will depend on the parameter α, which is in turn related to the Higgs VEV:

mW±

n =
n+ α

R
, mW± =

α

R
. (2.11)

The numerical value of α will therefore determine the relation between the SM W mass and
the KK mass mKK = 1/R.

Numerical results

The calculation of the potential is rather complex: as we know the spectrum as a function
of the Higgs VEV α, we can use the Weinberg-Coleman potential:

Veff (α) = ±1

2

∑
i

∫
d4p

(2π)4
log[p2 +M2

i (α)] . (2.12)

The results, in two variations of the model, are shown in Figure 1: it’s interesting that
the contribution of the gauge bosons (red/dashed) and of light fermions (green/dot-dashed)
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Figure 2: Higgs mass as a function of the Higgs VEV α for two variations of the model.
[hep-ph/0510366]

have minima at α ∼ 〈ϕ0〉 = 0, while it is the contribution of the top loops (blue/solid) that
generates a non trivial vacuum. From the potential we can also calculate the Higgs mass,
which is proportional to the second derivative of the potential. The results are shown in
Figure 2. The two curved correspond to two versions of the model, and they are obtained
by scanning over some free parameters of the model (the masses that control the fermion
localisation). Like in supersymmetry, a fairly light Higgs is preferred; furthermore, mh = 125
GeV can be easily obtain for small values of α = mW/mKK .

3 Second model: Gauge-Higgs Unification in warped

space, or a composite Higgs

A warped extra dimension (or Randall-Sundrum space) has been widely studied, because
it can fairly easily generate hierarchies between mass scales. In models of Gauge-Higgs, it
offers two main advantages: it automatically enhances both the Higgs and the top mass.

The difference between flat and warped space is the metric: the simple Minkowsky metric
in flat space is replaced by

ds2 = e−2x5/Rdxµdxµ − dx2
5 , x5 ⊂ [0, L] . (3.1)

This metric has an interesting property, conformal invariance, which is more evident if we
rewrite it in terms of z = Rex5/R:

ds2 =

(
R

z

)2

(dxµdxµ − dz2) , z ⊂ [R,R′ = ReL/R] . (3.2)

An increase in the value of z → ξz can be compensated by an analogous rescaling of xµ → ξxµ
to leave ds2 invariant: thus moving along the extra co-ordinate corresponds to a rescaling
of the size (and therefore of the energy) of physical systems. One can chose the two scales
in the metric so that R−1 ∼ MPl and (R′)−1 ∼ 1 TeV: moving from the boundary at z = R
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(Planck scale) to the z = R′ one (TeV brane) will rescale energy scales from the Planck scale
down to the TeV. Note that the length of the interval is L = R logR′/R.

A gauge boson in the warped space will have an action

Sgauge = −1

4

∫
d4x dz

(
R

z

)5

FMNF
MN = −1

4

∫
d4x dz

(
R

z

)
(F µν

µν − 2FµzF
µ
z ) . (3.3)

The factors of R/z come from the metric. As in the flat case, a gauge fixing term is added
to remove Aµ-A5 mixing:

SGF = − 1

2ξ

∫
d4x dz

(
R

z

)
(∂µAµ − ξz∂z(A5/z))2 . (3.4)

The equation of motion for the wave function of a vector are

z∂z

(
1

z
∂zfn

)
+m2

nfn = 0 , (3.5)

whose solutions can be expressed in terms of Bessel functions of the first and second kind:

fn = z (AJ1(mnz) +B Y1(mnz)) . (3.6)

For the scalars, the equation of motion reads:

∂z

(
z∂z

(
A5

z

))
+
m2
n

ξ
A5 = 0 . (3.7)

As before, massive mode are Goldstone bosons eaten by the massive vectors, while for the
zero mode

A5 ∼ z . (3.8)

3.1 Custodial symmetry?

We may want to try constructing a SU(3) model: however this is not acceptable in warped
space. The difference with respect to the flat case is that the Higgs vev depends linearly on
the extra co-ordinate, thus mixing between various KK modes is possibly generated by it.
In the flat case:

〈A5〉W+
n W

0
m ∼ v

∫
fn(x5)fm(x5) = 0 (3.9)

because the two wave functions are orthogonal. In the warped case, this is not true, therefore
tree level corrections to the electroweak precision measurements are usually generated, in
particular to the ρ parameter. In order to protect it, we need to use a gauge group that
includes a custodial symmetry: SO(5).
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- on the TeV brane, we can break SO(5)→ SO(4): the SO(4) ∼ SU(2)× SU(2) contains
the desired custodial symmetry (the breaking of this symmetry will be achieved via
the Higgs VEV).

- the generators of SO(5) that do not belong to the unbroken subgroup SO(4) form a 4
of SO(4), like the Higgs field in the SM! These fields will play the role of the Higgs.

- on the Planck brane, we break SO(5)→SU(2)×U(1), so that only the SM invariance
is preserved. As it is a subgroup of the unbroken SO(4), only the SU(2)×U(1) gauge
bosons have zero modes, as desired.

- for the scalars, only the Higgs has a zero mode.

This structure of the symmetry breaking is enough to ensure that the values of the W
and Z mass respect the SM relations at tree level (thus ρ = 1 at tree level).

3.2 AdS/CFT

The presence of a conformal symmetry in the metric suggests a correspondence between
models in warped space (anti de Sitter) and strongly interacting conformal theories in 4
dimensions. The correspondence goes as follows:

- fields and symmetries on the Planck brane correspond to the elementary sector of the
theory (like the photon in QCD);

- fields in the bulk correspond to operators (bound states) of the conformal sector, the
TeV brane breaks the conformal invariance and generates a mass gap (tower of meson
resonances);

- symmetries in the bulk and on the TeV brane correspond to global symmetries of the
strong sector (so, our strong sector is invariant under SO(5) which is spontaneoulsy
broken to SO(4)).

Thus our model can be seen as the SM (the Planck brane is invariant under the SM gauge
group) coupled to a conformal sector which is invariant under a global O(4) (that generated
the custodial symmetry!).

The properties of all the fields depend on their localisation in the extra space: the
cartoon in Figure 3 shows the typical scenario. Gauge bosons have a flat profile (due to
gauge invariance), while the Higgs is moderately localised toward the TeV brane. Light
fermions, like leptons, light quarks and the right-handed bottom, are localised toward the
Planck brane: they correspond to mostly elementary fields, and the localisation suppresses
their overlap with the Higgs. The top is localised toward the TeV brane, thus it is a mostly
composite state: its localisation enhances the overlap with the Higgs, thus it makes possible
to achieve masses larger than mW , even though the coupling is of the order of the gauge
couplings. The Higgs, being localised toward the TeV brane, is also a composite state! All
the massive resonances are also strongly localised to the TeV brane, thus showing their
composite nature.
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Figure 3: Wave functions in the warped model for gauge bosons, light fermions, tops and
KK modes, showing their localisation: the Planck brane is on the right, the TeV brane on
the left. The Higgs is also moderately localised towards the TeV brane.

3.3 Higgs potential and mass

The calculation of the Higgs potential proceeds as in the flat space, however the calculations
are complicated by the presence of Bessel functions. In Figure 4 we show the predicted
mass for the Higgs and the first KK resonance of various particles. The points correspond
to different choices for the parameters of the model. While the KK resonances are naturally
fairly heavy, above 1 TeV for fermions and above 3÷4 TeV for vectors, the Higgs mass is
predicted to be light mH < 140 GeV.
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Figure 4: Masses of the first KK states for the gauge bosons mρ and third generation quarks:
doublet qL, singlet top tR and singlet bottom bR [from hep-ph/0412089]. The round green
dots are preferred by electroweak precision measurements.
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