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1 Supersymmetry: a fermion-boson symmetry!

Supersymmetry is a symmetry that relates fermions and bosons to each other. It is useful
to address the naturalness problem because it can associate the BEH scalar with a fermion:
as the two partners share the same physical properties, the chiral symmetry which protects
the fermion mass will also protect the scalar partner mass!

Let’s consider s spin-0 quantum state |s >: supersymmetry can be thought of in terms
of an operator Q, which transforms the scalar state into a spin-1/2 state |f >:

Q|s >= |f > . (1.1)

In order for the equation to respect rotational invariance, the operator Q must carry spin-
1/2, thus it is a fermionic operator. The minimal spin-1/2 representation is a Weyl fermion,
i.e. a 2-component chiral fermion. One can however construct supersymmetric theories with
any number of chiral generators Qi (extended supersymmetry). Q is a fermion, therefore it
will respect anti-commutation relations:

{Q, Q̄} = −2σµpµ , {Q,Q} = 0 , {Q̄, Q̄} = 0 . (1.2)

Furthermore, being a spin-1/2 object, it has the following commutation properties with the
position and momentum operators:

[Q, pµ] = 0 , [Q̄, pµ] = 0 . (1.3)

So, we can define a closed algebra including the usual Poincaré algebra, extended by the
addition of the fermionic operator Q. In this sense supersymmetry is an extension of space-
time symmetries!
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1.1 How to construct a supersymmetric quantum field theory?

The most straightforward way would be to write down a theory containing a scalar field ϕ
and a chiral fermion χ, corresponding to the two related quantum states, and then derive
the transformation properties of the fields under the operator Q. This procedure, however,
turns out to be quite lengthy!

A shortcut is offered by the previous observation that the operator Q can be formally
included into the Poincaré algebra: this lead to the introduction of superfields! The idea is
that one can think of extend space-time by adding two extra co-ordinates, corresponding to
the operator Q. Such co-ordinates must anti-commute with each other, thus they are spinors:
the spinor co-ordinate θ (and θ̄). A field living in the superspace {xµ, θ}, a superfield, is
therefore a function of xµ, θ and θ̄:

S(xµ, θ, θ̄) . (1.4)

Now, θ is an anti-commuting 2-component, thus powers of θn with n > 2 must vanish: this
is due to the fact that for more than 2 spinors, at least two of them must have their spin
aligned and such configuration is forbidden by Pauli’s exclusion principle! This means that
the superfield Φ can be expanded in a finite series in powers of the super-coordinate θ. The
most general expansion reads:

S(xµ, θ, θ̄) = a+ θξ + θ̄χ̄+ θθb+ θ̄θ̄c+ θ̄σ̄µθvµ + θ̄θ̄θη + θθθ̄ζ̄ + θθθ̄θ̄d . (1.5)

where a, b, c, and d are scalars; ξ, χ, η and ζ are chiral fermions and vµ is a vector. However,
one should define some more minimal representations of the supersymmetric algebra, i.e.
superfields that have less independent components than the general expansion. This selection
is similar to the definition of spins: even though a spinor in 4 dimensions has 4 components,
the minimal representation is a 2-component (chiral) Weyl fermion! The minimal superfield
is the chiral superfield Φ, defined as

Φ(yµ, θ) = ϕ(yµ) +
√

2 θχ(yµ) + θθF (yµ) , (1.6)

where yµ = xµ+ iθ̄σ̄µθ. Note that Ψ only depends on θ̄ implicitly via yµ. The definition of Ψ
can be formally extracted from the supersymmetric transformation properties of superfields,
however the formalities are beyond the our scopes. Note also that Ψ contains a scalar field
ϕ, a 2-components spinor χ, and an extra field F , whose function will be clear shortly.

The next step is to write an action for the superfield: in addition to the integral over the
usual space-time, we need to integrate over the super-coordinate θ. There are, in this case,
two possible ways of integrating:∫

d2θ , and

∫
d2θd2θ̄ , (1.7)

where θ̄ is the hermitian conjugate of θ. Another consequence of the fermionic nature of θ
is that the only non-vanishing integrals are:∫

d2θ θθ = 1 ,

∫
d2θd2θ̄ θθθ̄θ̄ = 1 . (1.8)
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As you can always expand any function of θ and θ̄ in a finite series of terms, the integral
definition is such that

∫
d2θ selects the term of the expansion proportional to θθ, i.e.∫

d2θS(xµ, θ, θ̄) = b+ θ̄ζ̄ + θ̄θ̄d , (1.9)

while ∫
d2θd2θ̄S(xµ, θ, θ̄) = d . (1.10)

Finally, we need to define a supersymmetric action, which contains an integration over
the super-coordinates and is invariant under supersymmetric transformations. There are two
possibilities, and they are both important in the definition of supersymmetric theories. On
one hand, one can integrate over the whole superspace any superfield:

S1 =

∫
d4x

∫
d2θd2θ̄ S(xµ, θ, θ̄) . (1.11)

The second possibility is to integrate over d2θ a chiral superfield after setting θ̄ = 0, i.e.

S2 =

∫
d4x

∫
d2θΦ(xµ, θ) . (1.12)

Supersymmetric action for a chiral superfield

Let’s consider a chiral superfield Φ. The full expansion reads

Φ(yµ, θ) = ϕ+
√

2θχ+ θθF − iθ̄σ̄µθ∂µϕ+
i√
2
θθθ̄σ̄µ∂µχ−

1

4
θθθ̄θ̄∂µ∂µϕ , (1.13)

where all the fields ϕ, χ and F are intended to be functions of xµ.
Let’s first use S1. The first attempt is to integrate over a single chiral superfield:∫

d4x

∫
d2θd2θ̄Φ(yµ, θ) = −

∫
d4x

1

4
∂µ∂µϕ = 0 , (1.14)

because the θθθ̄θ̄ term is a total derivative! If we try∫
d4x

∫
d2θd2θ̄Φ†Φ =

∫
d4x (∂µϕ)†∂µϕ− iχ̄σ̄µ∂µχ+ F ∗F . (1.15)

This looks like the kinetic term for a scalar and a fermion. The extra field F does not have
any derivative, thus it is not a dynamic field (auxiliary field), and it can be easily integrated
out.

To use S2, we need chiral superfields: after setting θ̄ = 0, their expansion simplifies

Φ(xµ, θ) = ϕ+
√

2 θχ+ θθF . (1.16)

3



The most general action will therefore be∫
d4x

∫
d2θ

1

2
µΦΦ +

1

3
yΦΦΦ , (1.17)

where we have kept only the normalisable interaction (and neglected a linear term). The
integral selects the terms in the expansion proportional to θθ. There are two possibilities:
either we take an F component from one superfield and the scalar ones from the remaining
ones, or we select a fermion from two superfields, and scalars from the remaining ones.∫

d4x

∫
d2θ

1

2
µΦΦ +

1

3
yΦΦΦ + h.h. =

∫
d4x F

(
µϕ+ yϕ2

)
−
(

1

2
µ+ yϕ

)
χχ+ h.c. .(1.18)

Putting together this term with the kinetic term in Eq. 1.15, we can integrate out the
auxiliary field F by use of the equations of motion:

F ∗ +
(
µϕ+ yϕ2

)
= 0 . (1.19)

Therefore

F ∗F + F
(
µϕ+ yϕ2

)
+ F ∗

(
µϕ+ yϕ2

)∗
= −

∣∣µϕ+ yϕ2
∣∣2 = −F ∗F . (1.20)

Note that both the complex scalar ϕ and the chiral fermion have mass mϕ = mχ = µ.

General expressions

If we have N chiral superfields Φi, the most general action can be written as

S =

∫
d4x

{∫
d2θd2θ̄Φ†iΦi +

∫
d2θW (Φi) + h.c.

}
, (1.21)

where the superpotential W is a function of the superfields (if renormalisable, it can contain
up to trilinear terms). Besides the kinetic terms for scalars and fermions, the action will
contain the following interactions:

SW =

∫
d4x −

∑
i

∣∣∣∣∂W (ϕ)

∂ϕi

∣∣∣∣2 − 1

2

∑
i,j

∂2W (ϕ)

∂ϕi∂ϕj
χiχj + h.c.. (1.22)

2 Supersymmetric Standard Model

2.1 Naturalness in supersymmetry: the top loop

Let’s first consider the supersymmetric version of the top Yukawa:

Stop =

∫
d4x − ytχQϕHχtR + h.c. . (2.23)
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There are 3 relevant fields: the BEH field, the left-handed top contained in the doublet Q
and the right handed top tR. A supersymmetric version, must contain 3 chiral superfields
which have the same quantum numbers as the SM fields:

ΦH = ϕH +
√

2θχH + θθFH , (2.24)

ΦQ = ϕQ +
√

2θχQ + θθFQ , (2.25)

ΦtR = ϕtR +
√

2θχtR + θθFtR . (2.26)

The most general superpotential one can write down is:

W = ytΦQΦHΦtR . (2.27)

From the results above, the supersymmetric Yukawa interactions will be:

Ssusy−top =

∫
d4x − yt (ϕHχQχtR + ϕQχHχtR + ϕtRχQχH + h.c.) +

−y2
t

(
ϕ∗Qϕ

∗
H ϕQϕH + ϕ∗Hϕ

∗
tR
ϕHϕtR + ϕ∗Qϕ

∗
tR
ϕQϕtR

)
. (2.28)

The BEH field has two additional 4-scalar interactions with ϕQ and ϕtR . Such interactions,
will contribute to the loop corrections to the Higgs mass. Each loop will contribute (here we
assign a mass m to the scalar top partners):

−iδm2
φ = −3iy2

t

∫
d4k

(2π)4

i

k2 −m2

=
3y2

t

16π4
2π2i

∫
k3
EdkE

1

−k2
E −m2

= − 3y2
t

16π2

∫
dk2

E

k2
E

k2
E +m2

= − 3y2
t

16π2

∫ Λ2

0

dk2
E

(
1− m2

k2
E +m2

)
= − 3y2

t

16π2

(
Λ2 −m2 log

Λ2 +m2

m2

)
. (2.29)

Summing the contribution of the two scalar tops, the quadratically divergent term cancels
out, and we are left with log divergent terms

δm2
φ = − 3y2

t

16π2

(
m2
Q log

Λ2

m2
Q

+m2
tR

log
Λ2

m2
tR

)
. (2.30)

3 The Minimal Supersymmetric Standard Model (MSSM)

In a minimal supersymmetric version of the Standard Model, besides supersymmetric gauge
interactions that we have not described here, we need to promote each SM field to a superfield
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label SU(3)c SU(2)L U(1)Y 3 B L (−1)3(B−L)

r-h electron eR 1 1 1 0 -1 −
l-h leptons L 1 2 -1/2 0 1 −
r-h up quark uR 3 1 -2/3 -1 0 −
r-h down quark dR 3 1 1/3 -1 0 −
l-h quarks Q 3 2 1/6 1 0 −
Higgs (up) Hu 1 2 1/2 0 0 +
Higgs (down) Hd 1 2 -1/2 0 0 +

Table 1: Chiral superfield content of the MSSM. For completeness, we also add their Baryon
and Lepton numbers B and L.

(listed in Table 1). Note the presence of two Higgs doublets. If we had only one Higgs, say
Hu, we would only be able to write Yukawa interactions for up quarks:

Wu = yuΦHuΦQΦuR
. (3.31)

The other Yukawa in the SM would be written in terms of ϕ∗, which is contained in Φ∗

(which is not a chiral superfield!). Thus, we need to introduce a second Higgs doublet, with
opposite sign hypercharge:

Wd = ydΦHd
ΦQΦdR

+ yeΦHd
ΦLΦeR

. (3.32)

We can also add a bilinear in the two Higgs superfields:

WH = µΦHuΦHd
, (3.33)

which will generate a mass for the two Higgs scalars mHu = mHd
= µ.

There is another reason why two Higgses are needed: in the SM, a complete generation of
fermions is anomaly free. In supersymmetry, the Higgs superfield will contain a new fermion
doublet, the superpartner of the Higgs. The presence of a single higgsino would generate
anomalies: the role of the second Higgs is therefore to cancel such anomalies.

3.1 Troubleshooting 1: unwanted superpotential terms

In addition to the Yukawa interactions, the superfield content in Table 1 allow for many
more “dangerous” terms to be added.

For instance, one can add an operator made of 3 quark singlets:

ΦuR
ΦdR

ΦdR
; (3.34)

an operator of this kind would be forbidden in the SM because it contains 3 fermions.
Also, ΦL and ΦHd

have exactly the same quantum numbers, thus they can be inter-
changed:

ΦHd
ΦHd

ΦeR
, . . . (3.35)
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What symmetries of the SM are violated by such superpotential terms?
The first kind will violate Baryon number (the operator has net baryon number -1, like

an anti-neutron); the second kind violates lepton number. Such terms are very dangerous
because, among other things, can mediate the proton decay. Recall that both Baryon and
Lepton number conservation are an accidental consequence of the matter content of the SM!
In supersymmetric extensions of the SM, such accident does not occur.

R-parity and Dark Matter

The solution is to impose Baryon and Lepton number conservation by hand. We therefore
impose a Z2 parity on the superfields, defined as:

PM = (−1)3(B−L) ; (3.36)

it is called matter parity, and it is defined in terms of B − L because this combination
is anomaly free in the SM. Requiring the superpotential to be even under matter parity
eliminates all the unwanted terms.

We can further elaborate: any action term must contain an even number of fermions, so
we can redefine matter parity by adding an extra “−1” for fermions, without modifying the
interaction terms:

PR = (−1)3(B−L)+2s , (3.37)

where s is the spin of the field; this is called R-parity. Note that now scalars and bosons
in the same superfield have opposite R-parity; furthermore, all SM states (matter fermions
and scalar Higgses) have R-parity +1, while the supersymetric partners (squarks, sleptons
and higgsinos) have R-parity −1. This implies that the lightest supersymmetric particle is
stable, because it cannot decay into SM states only!

Can it play the role of Dark Matter?

3.2 Troubleshooting 2: supersymmetry cannot be exact!

Another problem is that supersymmetry is not an exact symmetry, because it would predict
that SM states and their partners have the same mass (we are pretty confident that there
are no scalar electrons around!).

One way to break supersymmetry without spoiling its nice properties (mainly the can-
cellation of divergences), is to add only “mass terms”, i.e. couplings with a positive mass
dimension: the reason behind is that at high energies, well above the supersymmetry breaking
mass scales, supersymmetry is restored, thus the divergences still cancel out! This principle
is called soft supersymmetry breaking. We should also be careful not to violate R-parity!
The allowed terms are therefore:

- Higgs mass terms: −m2
Hu
ϕ∗Hu

ϕHu −m2
Hd
ϕ∗Hd

ϕHd
;

- scalar quark and lepton masses: −m̃2
Qϕ
∗
QϕQ − m̃2

tR
ϕ∗tRϕtR + . . . ;
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- trilinear scalar couplings (in the same form as Yukawa couplings): AϕHuϕQϕtR + . . . ;

- gaugino masses (masses for the fermion partners of gauge bosons).

Note that a huge number of soft supersymmetry breaking terms can be added to the
MSSM (more that 120!). In order to study the phenomenology, one needs to make simplifying
assumptions or develop a mechanism of supersymmetry breaking!

4 Exercises

1) Starting with the superfield content in Table 1, write the most general superpotential
(including matter parity violation terms). Which symmetries of the SM are broken by
each term?

2) R-parity renders the lightest supersymmetric partner stable. Can you list all the par-
ticles in the MSSM that may be candidates for Dark Matter?

3) Consider the top scalar partner ϕtR . From what we discussed today in class, can
you guess the decay modes of such state in an exactly supersymmetric MSSM? What
changes if we add soft supersymmetry breaking terms?

4) Consider the SM extended with a new Dirac fermion T with mass M , and that couples
to the SM Higgs scalar via the interaction

λ

M
φ†φ T̄T .

Calculate the contribution of this interaction to the Higgs mass. For what value of the
coupling λ can such contribution cancel the divergent contribution of the top loop?
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