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Outline 

Lecture 1:  Introduction and basic formalism 
 Probability, statistical tests, parameter estimation. 

Lecture 2:  Discovery and Limits 
 Asymptotic formulae for discovery/limits 
 Exclusion without experimental sensitivity, CLs, etc. 
 Bayesian limits 

Lecture 3:  Further topics 

 The Look-Elsewhere Effect 
 Unfolding (deconvolution) 
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Some statistics books, papers, etc.  
J. Beringer et al. (Particle Data Group), Review of Particle Physics, 
Phys. Rev. D86, 010001 (2012); see also pdg.lbl.gov  
sections on probability statistics, Monte Carlo 

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
 see also www.pp.rhul.ac.uk/~cowan/sda 

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989 

 see also hepwww.ph.man.ac.uk/~roger/book.html 

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 

F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 

S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional probability: 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
    but subjective probability can provide more natural treatment of  
    non-repeatable phenomena:   
        systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 1 7 

Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations. 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 
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Hypothesis testing 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Definition of a (frequentist) hypothesis test 
Consider e.g. a simple hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

Roughly speaking, place the critical region where there is a low  
probability (α) to be found if H0 is true, but high if the alternative 
H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ w | H0 ) ≤ α	



But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - w | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Defining a multivariate critical region 
Each event is a point in x-space; critical region is now defined 
by a ‘decision boundary’ in this space. 

What is best way to determine the decision boundary? 

W 
H1 

H0 

Perhaps with ‘cuts’: 
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Other multivariate decision boundaries 

Or maybe use some other sort of decision boundary: 

W 
H1 

H0 

W 
H1 

H0 

linear or nonlinear 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 1 16 

Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Constructing a test statistic 
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

For a test of size α of the simple hypothesis H0, to obtain 
the highest power with respect to the simple alternative H1, 
choose the critical region w such that the likelihood ratio satisfies 

everywhere in w and is less than k elsewhere, where k is a constant 
chosen such that the test has size α. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 1 18 

Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express level of agreement between data and H with p-value: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 

St. Andrews 2012 / Statistics for HEP / Lecture 1 

The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
the relevant alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 
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Using a p-value to define test of H0 

So the probability to find the p-value of H0, p0, less than α is 

St. Andrews 2012 / Statistics for HEP / Lecture 1 

We started by defining critical region in the original data 
space (x), then reformulated this in terms of a scalar test  
statistic t(x). 

We can take this one step further and define the critical region  
of a test of H0 with size α as the set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Quick review of parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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Interval estimation:  confidence interval 
from inversion of a test 

Suppose a model contains a parameter µ; we want to know which 
values are consistent with the data and which are disfavoured. 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The probability that the true value of µ will be rejected is 
 not greater than α, so by construction the confidence interval  
 will contain the true value of µ with probability ≥  1 – α. 

The interval depends on the choice of the test (critical region). 

If the test is formulated in terms of a p-value, pµ, then the  
confidence interval represents those values of µ for which pµ > α. 

To find the end points of the interval, set pµ = α and solve for µ. 
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A simple example 
For each event we measure two variables, x = (x1, x2). 

Suppose that for background events (hypothesis H0),  

and for a certain signal model (hypothesis H1) they follow 

where x1, x2  ≥ 0 and C is a normalization constant. 
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Likelihood ratio as test statistic 
In a real-world problem we usually wouldn’t have the pdfs  
f(x|H0) and f(x|H1), so we wouldn’t be able to evaluate the 
likelihood ratio  

for a given observed x, hence 
the need for multivariate  
methods to approximate this  
with some other function. 

But in this example we can  
find contours of constant  
likelihood ratio such as: 
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Event selection using the LR 
Using Monte Carlo, we can find the distribution of the likelihood 
ratio or equivalently of 

signal (H1) 

background 
 (H0) 

From the Neyman-Pearson lemma 
we know that by cutting on this 
variable we would select a signal 
sample with the highest signal 
efficiency (test power) for a given 
background efficiency. 
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Search for the signal process 
But what if the signal process is not known to exist and we want 
to search for it.   The relevant hypotheses are therefore 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0 with Z > 5 constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 
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Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 
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Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 
Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of 
 b only 

p-value of s+b 

Suppose in real experiment 
Q is observed here. 

If ps+b < α, reject signal model s at confidence level 1 – α. 

If pb  < 2.9 × 10-7, reject background-only model (signif. Z = 5). 
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Wrapping up lecture 1 

General idea of a statistical test: 
 Divide data spaced into two regions; depending on 
 where data are then observed, accept or reject hypothesis.  

Significance tests (also for goodness-of-fit): 
 p-value = probability to see level of incompatibility 
 between data and hypothesis equal to or greater than 
 level found with the actual data. 

Parameter estimation 
 Maximize likelihood function → ML estimator. 
 Bayesian estimator based on posterior pdf. 
 Confidence interval:  set of parameter values not rejected  
 in a test of size α = 1 – CL. 
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Extra slides 
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Proof of Neyman-Pearson lemma 
We want to determine the critical region W that maximizes the  
power 

subject to the constraint 

First, include in W all points where P(x|H0) = 0, as they contribute 
nothing to the size, but potentially increase the power. 
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Proof of Neyman-Pearson lemma (2) 

For P(x|H0) ≠ 0 we can write the power as 

The ratio of 1 – β to α is therefore 

which is the average of the likelihood ratio P(x|H1) / P(x|H0)  over 
the critical region W, assuming H0. 

(1 – β) / α  is thus maximized if W contains the part of the sample 
space with the largest values of the likelihood ratio. 
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Choosing a critical region 
To construct a test of a hypothesis H0, we can ask what are the  
relevant alternatives for which one would like to have a high power. 

 Maximize power wrt H1 = maximize probability to 
            reject H0 if H1 is true. 

Often such a test has a high power not only with respect to a  
specific point alternative but for a class of alternatives.   
E.g., using a measurement x ~ Gauss (µ, σ) we may test 

 H0 : µ = µ0 versus the composite alternative H1 : µ > µ0 

We get the highest power with respect to any µ > µ0  by taking  
the critical region x ≥ xc where the cut-off xc is determined by  
the significance level such that  

   α = P(x ≥xc|µ0). 
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Τest of µ = µ0 vs. µ > µ0  with  x ~ Gauss(µ,σ) 

Standard Gaussian quantile 

Standard Gaussian 
cumulative distribution 
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Choice of critical region based on power (3) 

But we might consider µ < µ0 as 
well as µ > µ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided test). 

New critical region now  
gives reasonable power  
for µ < µ0, but less power  
for µ > µ0 than the original  
one-sided test. 
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No such thing as a model-independent test 
In general we cannot find a single critical region that gives the 
maximum power for all possible alternatives (no “Uniformly 
Most Powerful” test).  

In HEP we often try to construct a test of 

 H0 : Standard Model (or “background only”, etc.) 

such that we have a well specified “false discovery rate”, 

 α = Probability to reject H0 if it is true, 

and high power with respect to some interesting alternative,  

 H1 : SUSY, Z′, etc. 

But there is no such thing as a “model independent” test.  Any 
statistical test will inevitably have high power with respect to 
some alternatives and less power with respect to others. 
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Choice of test for discovery 
If µ represents the signal rate, then discovering the signal process 
requires rejecting H0 : µ = 0.   

Often our evidence for the signal process comes in the form of 
an excess of events above the level predicted from background 
alone, i.e., µ > 0 for physical signal models. 

So the relevant alternative hypothesis is H0 : µ > 0. 

In other cases the relevant alternative may also include µ < 0  
(e.g., neutrino oscillations). 

The critical region giving the highest power for the test of µ = 0  
relative to the alternative of µ > 0 thus contains high values of the 
estimated signal rate. 
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Choice of test for limits 
Suppose the existence of the signal process (µ > 0) is not yet  
established. 

The interesting alternative in this context is µ = 0.   

That is, we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

The critical region giving the highest power for the test of µ relative 
to the alternative of µ = 0 thus contains low values of the estimated 
rate,    . 

 Test based on one-sided alternative → upper limit. 
 µ̂
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More on choice of test for limits 
In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold. 

For example, the process may be known to exist, and thus µ = 0 
is no longer an interesting alternative. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain data values corresponding to both high and low signal rate.   

       → unified intervals, G. Feldman, R. Cousins,  
 Phys. Rev. D 57, 3873–3889 (1998) 

A Big Debate is whether to focus on small (or zero) values 
of the parameter as the relevant alternative when the existence of  
a signal has not yet been established.  Professional statisticians  
have voiced support on both sides of the debate.  
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 


