Flavor physics

Yuval Grossman

Cornell

Yesterday...

- What is HEP and model building
- The SM, and its flavor structure
- CKM matrix
- FCNCs

Today we will talk about counting parameters and how to determine the flavor parameters

Parameter counting

How many parameters we have?

How many parameters are physical?

- "Unphysical" parameters are those that can be set to zero by a basis rotation
- General theorem

$$
N(\text { Phys })=N(\text { tot })-N(\text { broken })
$$

- N (Phys), number of physical parameters
- $N($ tot $)$, total number of parameters
- N (broken), number of broken generators

Example: Zeeman effect

A hydrogen atom with weak magnetic field

- The magnetic field add one new physical parameter, B

$$
V(r)=\frac{-e^{2}}{r} \Rightarrow V(r)=\frac{-e^{2}}{r}+B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}
$$

- But there are 3 total new parameters
- The magnetic field breaks explicitly: $S O(3) \rightarrow S O(2)$
- 2 broken generators, can be "used" to define the z axis

$$
N(\text { Phys })=N(\text { tot })-N(\text { broken }) \quad \Rightarrow \quad 1=3-2
$$

Back to the flavor sector

Without the Yukawa interactions, a model with N copies of the same field has a $U(N)$ global symmetry

- It is just the symmetry of the kinetic term

$$
\mathcal{L}=\bar{\psi}_{i} D_{\mu} \gamma^{\mu} \psi_{i}, \quad i=1,2, \ldots, N
$$

- $U(N)$ is the general rotation in N dimensional complex space
- $U(N)=S U(N) \times U(1)$ and it has N^{2} generators

Two generation SM

First example, two generation SM

- Two Yukawa matrices: $Y^{D}, Y^{U}, N_{\text {Total }}=16$
- Global symmetries of the kinetic terms: $U(2)_{Q} \times U(2)_{D} \times U(2)_{U}, 12$ generators
- Exact accidental symmetries: $U(1)_{B}, 1$ generator
- Broken generators due to the Yukawa: $N_{\text {Broken }}=12-1=11$
- Physical parameters: $N_{\text {Physical }}=16-11=5$. They are the 4 quarks masses and the Cabibbo angle

The SM flavor sector

Back to the SM with three generations. Do it yourself

- Total parameters (in Yukawas): $N_{T}=$
- Symmetry generators of kinetic terms: $N_{G}=$
- Unbroken global generators: $N_{U}=$
- Broken generators: $N_{B}=$
- Physical parameters: $N_{P}=$

The SM flavor sector

Back to the SM with three generations. Do it yourself

- Total parameters (in Yukawas): $N_{T}=2 \times 18=36$
- Symmetry generators of kinetic terms: $N_{G}=3 \times 9=27$
- Unbroken global generators: $N_{U}=1$
- Broken generators: $N_{B}=27-1=26$
- Physical parameters: $N_{P}=36-26=10$
- 6 quark masses, 3 mixing angles and one CPV phase

Remark: The broken generators are 17 Im and 9 Re . We have 18 real and 18 imaginary to "start with" so the physical ones are $18-17=1$ and $18-9=9$

Homework

Consider a model with the same gauge symmetry and SSB as in the SM. The fermions, however, are
$Q_{L}(3,2)_{1 / 6}, S_{L}(3,1)_{-1 / 3}, U_{R}(3,1)_{2 / 3}, D_{R}(3,1)_{-1 / 3}, S_{R}(3,1)_{-1 / 3}$

- What is the spectrum of this model? That is, what are the quarks after SSB. Note that you can also have "bare masses" in this model, for example, $m_{s s} \bar{s}_{L} s_{R}$.
- How many physical parameters there are, and what are they?
- Are there W exchange flavor changing interactions?
- Is CP a good symmetry?
- Are there tree level FCNCs in this model?

The CKM matrix

The flavor parameters

- The 6 masses. We kind of know them. There is a lot to discuss, but I will not do it in these lectures
- The CKM matrix has 4 parameters
- 3 mixing angles (the orthogonal part of the mixing)
- One phase (CP violating)
- We will concentrate on trying to find ways to determine the CKM three mixing angles and one phase. Here we will get into some details

The CKM matrix

$$
\begin{gathered}
\mathcal{L}_{W}=\frac{g}{\sqrt{2}} \overline{U_{L}} V \gamma^{\mu} D_{L} W_{\mu}^{+}+\text {h.c. } \\
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
\end{gathered}
$$

- CKM is unitary

$$
\sum V_{i j} V_{i k}^{*}=\delta_{j k}
$$

- Experimentally, $V \sim 1$. Off diagonal terms are small
- Many ways to parametrize the matrix

CKM parametrization

- The standard parametrization

$$
\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

where $c_{i j} \equiv \cos \theta_{i j}$ and $s_{i j} \equiv \sin \theta_{i j}$

- In general there are 5 entries that carry a phase
- Experimentally: (will explain later how these measurements were done)

$$
|V| \approx\left(\begin{array}{ccc}
0.97383 & 0.2272 & 3.96 \times 10^{-3} \\
0.2271 & 0.97296 & 4.221 \times 10^{-2} \\
8.14 \times 10^{-3} & 4.161 \times 10^{-2} & 0.99910
\end{array}\right)
$$

The Wolfenstein parametrization

- Since $V \sim 1$ it is useful to expand it

$$
V \approx\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- One small parameter $\lambda \sim 0.2$, and three (A, ρ, η) that are roughly $O(1)$
- As always, be careful (unitarity...)
- Note that to this order only V_{13} and V_{31} have a phase

The unitarity triangle

A geometrical presentation of $V_{u b}^{*} V_{u d}+V_{t b}^{*} V_{t d}+V_{c b}^{*} V_{c d}=0$

Rescale by the c size and rotated

$$
A \lambda^{3}[(\rho+i \eta)+(1-\rho-i \eta)+(-1)]=0
$$

CKM determination

CKM determination

- Basic idea: Measure the 4 parameters in many different ways. Any inconstancy is a signal of NP
- Problems: Experimental errors and theoretical errors
- Have to be smart...
- Smart theory to reduce the errors
- Smart experiment to reduce the errors
- There are cases where both errors are very small

Classifications

Two classifications:

- Parameters
- Sides of the UT (magnitudes of CKM elements)
- Angles of the UT (relative phases between CKM elements)
- Combination of those
- Amplitudes
- Tree (mostly SM)
- Loop (SM and maybe also NP)
- Combination of those

Experimental issues

Just very brief

- Many times we look at very small rates or small asymmetries (we like to probe small couplings). Statistics is needed
- Very important to get the PID (like K / π separation)
- Flavor tagging: is it a B or a \bar{B}
- CP properties: the detector is made of matter

Theoretical uncertainties

Always: QCD

- We calculate with quark, but we measure hadrons
- The strong interaction is strong. No perturbation theory. Really a problem
Solutions:
- We use some approximate symmetries, for example: isospin, flavor SU(3), HQS
- There are cases where one can construct observables where the hadronic physics cancels

Measuring sides

Tree level decays are sensitive to absolute values of CKM element

$$
\Gamma\left(B \rightarrow X_{c} \mu \nu\right) \propto\left|V_{c b}\right|^{2}
$$

Measuring sides: problems

Not so simple...

$$
\Gamma(b \rightarrow c \mu \nu) \propto m_{b}^{5}\left|V_{c b}\right|^{2}
$$

- Because the b is heavy, $m_{b} \gg \Lambda_{Q C D}$ we can expand in $\Lambda_{Q C D} / m_{b}$ and we get

$$
\Gamma(b \rightarrow c \mu \nu) \approx \Gamma\left(B \rightarrow X_{c} \mu \nu\right)
$$

- Not easy to get m_{b} the mass of the b quark. We use HQS and use m_{B}, the B meson mass
- Using symmetries, and expanding around them we can get rather accurate determination

Always: Look for a process where we have sensitivity, and work our way around QCD

An aside: what is m_{B} ?

$m_{B}=?$

Other sides

Similar issues with other tree level decays

- β-decay, $d \rightarrow u e \bar{\nu} \propto V_{u d}$; Isospin
- K-decay, $s \rightarrow u e \bar{\nu} \propto V_{u s}$; Isospin and $\mathrm{SU}(3)$
- D-decay, $c \rightarrow q e \bar{\nu} \propto V_{c q} q=d, s$; HQS
- B decays can be used also for $V_{u b}$. Harder
- Not easy with top. Cannot tag the final flavor, low statistics

Loop decays

- We have sensitivity to magnitude of CKM elements in loops
- More sensitive to $V_{t q}$ that is harder to get in tree level decays
- But at the same time it may be modified by new heavy particles
- This is a general argument. NP is likely to include "heavy" particles, that can affect loop processes much more than tree level decays

Loop: example

$$
A(b \rightarrow s \gamma) \propto \sum V_{i b} V_{i s}^{*}
$$

What is $\sum V_{i b} V_{i s}^{*}$?

GIM Mechanism

what we really have is

$$
A(b \rightarrow s \gamma) \propto \sum V_{i b} V_{i s}^{*} f\left(m_{i}\right)
$$

- Because the CKM is unitary, the m_{i} independent term in f vanishes
- Must be proportional to the mass (in fact, m_{i}^{2}) so the heavy fermion in the loop is dominant
- In Kaon decay this gives m_{c}^{2} / m_{W}^{2} extra suppression. Numerically not important for b decays
- CKM unitarity and tree level Z exchange are related. (Is the diagram divergent?)

Meson mixing

Two level system

Two level system in QM. |1 \rangle and $|2\rangle$ are energy E.S.

$$
\left|f_{1}\right\rangle=\frac{|1\rangle+|2\rangle}{\sqrt{2}}, \quad\left|f_{2}\right\rangle=\frac{|1\rangle-|2\rangle}{\sqrt{2}},
$$

The time evolution

$$
\left|f_{1}\right\rangle(t)=\exp [i \Delta E t / 2]|1\rangle+\exp [-i \Delta E t / 2]|2\rangle
$$

The probability to measure flavor f_{i} at time t is

$$
\left|\left\langle f_{1} \mid f_{1}\right\rangle\right|^{2}=\frac{1+\cos \Delta E t}{2} \quad\left|\left\langle f_{1} \mid f_{2}\right\rangle\right|^{2}=\frac{1-\cos \Delta E t}{2}
$$

- Oscillations with frequency ΔE
- The relevant parameter is $x \equiv \Delta E t$

Meson mixing

For relativistic case

- $E \rightarrow m$. Roughly,

$$
K_{S, L}=\frac{K \pm \bar{K}}{\sqrt{2}}
$$

- "Measurement" is done by the decay

The probability to measure flavor f_{i} at time t is

$$
\left|\left\langle f_{1} \mid f_{1}\right\rangle\right|^{2}=\frac{1+\cos \Delta m t}{2} \quad\left|\left\langle f_{1} \mid f_{2}\right\rangle\right|^{2}=\frac{1-\cos \Delta m t}{2}
$$

- Oscillations with frequency Δm
- The relevant time scale is $x \equiv \Delta m / \Gamma$

Calculations of Δm

- There are 4 neutral mesons: $K(\bar{s} d), B(\bar{b} d), B_{s}(\bar{b} s), D(c \bar{u})$
- Why not charged mesons?
- Why not the neutral pion?
- Why not the K^{*}
- Why not T mesons?
- The two flavor eigenstate B and \bar{B} mix via the weak interactions. It is an FCNC process $m_{\text {weak }}=A(B \rightarrow \bar{B})$
- In the SM it is a loop process, and it gives an effect that is much smaller than the mass

$$
\begin{aligned}
M=\left(\begin{array}{cc}
m_{B} & m_{\text {weak }} \\
m_{\text {weak }} & m_{B}
\end{array}\right) & \Rightarrow \quad M_{H, L}=m_{B} \pm m_{\text {weak }} / 2 \\
& \Rightarrow \Delta M=m_{\text {weak }}
\end{aligned}
$$

The box diagram

- In the SM the mixing is giving by the box diagram

- The result is

$$
\Delta M \propto \sum_{i, j} V_{i s} V_{i d}^{*} V_{j s} V_{j d}^{*} f\left(m_{i}, m_{j}\right)
$$

- To leading order $f \sim m_{i}^{2} / m_{W}^{2}$ so for K mixing m_{c}^{2} / m_{W}^{2} suppression

Meson mixing: remarks

- Mixing can be used to determine magnitude of CKM elements. The heavy fermion is the dominant one. For example B mixing is used to get $\left|V_{t d}\right|$
- There are still hadronic uncertainties. We calculate at the quark level and we need the meson. Lattice QCD is very useful here
- My treatment was very simplistic, there are more effects
- Each meson has its own set of approximations

Meson mixing

In general we have also width difference between the two eigenstates. They are due to common final states.

$$
x \equiv \frac{\Delta m}{\Gamma} \quad y \equiv \frac{\Delta \Gamma}{2 \Gamma}
$$

K	$x \sim 1$	$y \sim 1$
D	$x \sim 10^{-2}$	$y \sim 10^{-2}$
B_{d}	$x \sim 1$	$y \sim 10^{-2}$
B_{s}	$x \sim 10$	$y \sim 10^{-1}$

Mixing measurements

How this is done?

- Need the flavor of the initial state. Usually the mesons are pair produced
- Same side tagging ($D^{*} \rightarrow D \pi$)
- Other side tagging (semileptonic B decays)
- The final flavor
- Use time dependent (easier for highly boosted mesons)
- Use time integrated signals
- The final state may not be a flavor eigenstate, but we still can have oscillations as long as it is not a mass eigenstate

CPV

What is CP

- A symmetry between a particle and its anti-particle
- CP is violated if we have

$$
\Gamma(A \rightarrow B) \neq \Gamma(\bar{A} \rightarrow \bar{B})
$$

- It is a very small effect in Nature, and thus sensitive to NP
- In the SM it is closely related to flavor
- We do not discuss the strong CP problem that is not directly related to flavor
- We also do not discuss the need for CP for baryogenesis

How to find CPV

It is not easy to detect CPV

- Always need interference of two (or more) amplitudes
- CPT implies that the total widths of a particles and it anti-particles are the same, so we need at least two modes with CPV
- To see CPV we need 2 amplitudes with different weak and strong phases

All these phases

- Weak phase (CP-odd phase)
- Phase in \mathcal{L}
- In the SM they are only in the weak part so they are called weak phases

$$
C P\left(A e^{i \phi}\right)=A e^{-i \phi}
$$

Strong phase

- Strong phase (CP-even phase). Do not change under CP

$$
C P\left(A e^{i \delta}\right)=A e^{i \delta}
$$

- Due to time evolution

$$
\psi(t)=e^{i H t} \psi(0)
$$

- They are also due to intermediate real states, and have to do with "rescattering" of hadrons
- Such strong phases are very hard to calculate

Why we need the two phases?

Intuitive argument

- If we have only one $|A|^{2}=|\bar{A}|^{2}$
- Two but with a different of only weak phase

$$
\left|A+b e^{i \phi}\right|^{2}=\left|A+b e^{-i \phi}\right|^{2}
$$

- When both are not zero it is not the same (do it for HW!)

CPV remarks

- The basic idea is to find processes where we can measure CPV
- In some cases they are clean so we get sensitivity to the phases of the UT (or of the CKM matrix)
- We can be sensitive to the CP phase without measuring CP violation
- Triple products and EDMs are also probes of CPV. I will not talk about that
- So far CPV was only found in meson decays, K_{L}, B_{d} and $B^{ \pm}$, and we will concentrate on that

The three classes of CPV

We need to find processes where we have two interfering amplitudes

- Two decay amplitudes
- Two oscillation amplitudes
- One decay and one oscillation amplitudes

Where the phases are coming from?

- Weak phases from the decay or mixing amplitudes (SM or NP)
- Strong phase is the time evolution (mixing) or the rescattering (decay)

The 3 classes

- 1: Decay 2: Mixing 3: Mixing and decay

Type 1: CPV in decay

Two decay amplitudes

$$
|A(B \rightarrow f)| \neq|A(\bar{B} \rightarrow \bar{f})|
$$

- The way to measure it is via

$$
a_{C P} \equiv \frac{\Gamma(\bar{B} \rightarrow \bar{f})-\Gamma(B \rightarrow f)}{\Gamma(\bar{B} \rightarrow \bar{f})+\Gamma(B \rightarrow f)}=\frac{|\bar{A} / A|^{2}-1}{|\bar{A} / A|^{2}+1}
$$

- If we write $A=A(1+r \exp [i(\phi+\delta)])$

$$
a_{C P}=r \sin \phi \sin \delta
$$

- We like r, δ and ϕ to be large
- Work for decays of both charged and neutral hadrons

CPV in decay, example: $B \rightarrow K \pi$

$$
(P)+\left(P_{E W}\right)
$$

P is a loop amplitude, but due to CKM factors $P / T \sim 3$. We also have a strong phase difference

One more example: $B \rightarrow D K$

- A bit more "sophisticated" example of CPV in decay
- Theoretically by far the cleanest measurement of any CKM parameter

Mixing formalism with CPV

When there is CPV the mixing formalism is more complicated. Diagonalizing the Hamiltonian we get

$$
B_{H, L}=p|B\rangle \pm q|\bar{B}\rangle
$$

- In general B_{H} and B_{L} are not orthogonal
- This is because they are "resonances" not asymptotic states. Open system
- The condition for the non orthogonality is CPV

2: CPV in mixing

The second kind of CPV is when it is pure in the mixing

$$
|q| \neq|p| \quad\left(B_{H, L}=p|B\rangle \pm q|\bar{B}\rangle\right)
$$

We measure it by semileptonic asymmetries

- It was measured in

$$
\frac{\Gamma\left(K_{L} \rightarrow \pi \ell^{+} \nu\right)-\Gamma\left(K_{L} \rightarrow \pi \ell^{-} \bar{\nu}\right)}{\Gamma\left(K_{L} \rightarrow \pi \ell^{+} \nu\right)+\Gamma\left(K_{L} \rightarrow \pi \ell^{-} \bar{\nu}\right)}=(3.32 \pm 0.06) \times 10^{-3}
$$

- This is so far the only way we can define the electron microscopically!

3: CPV in interference mixing \& decay

Interference between decay and mixing amplitudes

$$
A\left(B \rightarrow f_{C P}\right) \quad A\left(B \rightarrow \bar{B} \rightarrow f_{C P}\right)
$$

- Best with one decay amplitude
- Very useful when f is a CP eigenstate
- In that case $\left|A\left(B \rightarrow f_{C P}\right)\right|=\left|A\left(\bar{B} \rightarrow f_{C P}\right)\right|$

Some definitions

$$
\lambda \equiv \frac{q}{p} \frac{\bar{A}}{A}
$$

In the case of a CP final state

- $\lambda \neq \pm 1 \Rightarrow \mathrm{CPV}$
- $|\lambda| \neq 1$ because $|A| \neq|\bar{A}|$. CPV in decay
- $|\lambda| \neq 1$ because $|q| \neq|p|$. CPV in mixing
- The cleanest case $|\lambda| \approx 1$ and $\operatorname{Im}(\lambda) \neq 0$. Interference between mixing and decay
- We can have several classes at the same time
- In the clean cases we have one dominant source

Formalism

B at $t=0$ compared to a \bar{B} and let them evolve

$$
a_{C P}(t) \equiv \frac{\Gamma(B(t) \rightarrow f)-\Gamma(\bar{B}(t) \rightarrow f)}{\Gamma(B(t) \rightarrow f)+\Gamma(\bar{B}(t) \rightarrow f)}
$$

Consider the case where $|\lambda|=1$

$$
A_{C P}(t)=-I m \lambda \sin \Delta m t
$$

- We know Δm so we can measure Im λ
- Im λ is the phase between mixing and decay amplitudes
- When we have only one dominant decay amplitude all the hadronic physics cancel (YES!!!)
- In some cases this phase is $O(1)$

Example: $B \rightarrow \psi K_{S}$

Reminder ψ is a $\bar{c} c, K_{S}$ is s and d

- One decay amplitude, tree level $A \propto V_{c b} V_{c s}^{*}$. In the standard parametrization it is real
- Very important: $|A|=|\bar{A}|$ to a very good approximation.
- In the standard parametrization $q / p=\exp (2 i \beta)$ to a very good approximation
- We then get

$$
\operatorname{Im} \lambda=\operatorname{Im}\left[\frac{q}{p} \bar{A}\right]=\sin 2 \beta
$$

- For HW do some other decays: $D^{+} D^{-}, \pi^{+} \pi^{-}, \phi K_{S}$ and $B_{s} \rightarrow \psi \phi$ (Ignore the subtleties)

Instead of summary

All together now

Zoom in

The NP flavor problem

The flavor problems

- "Problem" is not a problem. It is a hint for something more fundamental
- The SM flavor problems
- Why there are 3 generations?
- Why the mass ratios and mixing angles are small and hierarchical?
- The NP flavor problem is different

The SM is not perfect...

- We know the SM does not describe gravity
- At what scale it breaks down?

We parametrize the NP scale as the denominator of an effective higher dimension operator. The weak scale is roughly

$$
\mathcal{L}_{\mathrm{eff}}=\frac{\mu e \nu \bar{\nu}}{\Lambda_{W}^{2}} \Rightarrow \Lambda_{W} \sim 100 \mathrm{GeV}
$$

- The effective scale is roughly the masses of the new fields times unknown couplings
- Flavor bounds give $\Lambda \gtrsim 10^{4} \mathrm{TeV}$

Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \mathrm{TeV}$
- Flavor bounds $\Rightarrow \Lambda \gtrsim 10^{4} \mathrm{TeV}$

Any TeV scale NP has to deal with the flavor bounds

Such NP cannot have a generic flavor structure

Flavor is mainly an input to model building, not an output

