Theoretical Background

B_{d} has spin $0, J / \psi$ and K^{*} vector mesons \rightarrow final state admixture of 3 states with relative angular momentum $L=0,1,2$
Final state products described by three transversity angles $\Omega=\{\cos \psi, \cos \theta, \varphi\}$ 3 complex amplitudes: $\boldsymbol{A}_{\boldsymbol{o}} \boldsymbol{A}_{/ /}, \boldsymbol{A}_{\perp}$

Analysis strategy

-•••• Toy MC Angular momentum:
........... L = 0, 2
\qquad L Amplitude $0 \quad A_{0}, A_{1 /}$ $\begin{array}{lc}1 & A_{\perp} \\ 2 & A_{0}, A_{l \mid}\end{array}$

To disentangle angular momentum states perform maximum likelihood fit, simultaneously in mass and 3 transversity angles

Contribution from non-resonant $K \pi$ mode (S-wave), described by additional amplitude \boldsymbol{A}_{s} Physics parameters:
$\left|A_{\|}\right|^{2},\left|A_{\perp}\right|^{2},\left|A_{s}\right|^{2}, \delta_{\|}, \delta_{\perp}, \delta_{s}$

Event sample:

$\mathcal{L}_{\text {int }} \approx 1 \mathrm{fb}^{-1}$ (LHC 2011 run)
77285 candidates used in analysis 61132 ± 274 signal events

Background studies

Main background components to be considered:

- Combinatorial background of random tracks
- $B \rightarrow J / \psi X$ events (true J / ψ)
- Muons from fake J / ψ (negligible)

Scatter plot: J / Ψ vs. B_{d} mass

Angular acceptance

Acceptance corrections are taken from Monte Carlo:

- Angular coverage of the detector (10mrad < $\uparrow<400 \mathrm{mrad}$)
- Implicit momentum cuts (reconstruction)

$>$ In general good agreement between data and Monte Carlo for all kinematic variables
> Only discrepancy: pion momentum distribution for low momenta (this is currently under study)

Very Preliminary results

Systematics:

- Data/MC difference
- Background description
- Acceptance treatment
- Mass model

Consistent with previous results
$\left|A_{| |}\right|^{2} 0.228 \pm 0.004 \pm 0.003$ $\left|A_{\perp}\right|^{2} 0.203 \pm 0.004 \pm 0.003$
$\left|A_{s}\right|^{2} 0.044 \pm 0.004 \pm 0.013$
$\delta_{\text {\| }} \quad-2.98 \pm 0.02 \pm 0.04$
$\delta_{\perp} \quad 2.93 \pm 0.02 \pm 0.02$

