

A measurement of the Cross Section of the Z decay in muon channel and prediction of the rate of the Z decay in tau-lepton channel

Marzieh Vahabi

The Z at LHC

☐ The Z production mechanism at the LHC:

- ☐ The Drell-Yan process: a quark and anti-quark fuse into Z,
- ☐ The NLO mechanism : quark gluon scattering,
- ☐ Higgs; H -> ZZ.

The Z at ATLAS

- ☐ The Z boson has a very short lifetime, it decays shortly after its production.
- ☐ The Z0 boson is not detected directly in the ATLAS experiment and it must be reconstructed from its decay products.
- ☐ The Z0 boson decays to fermions and antifermion pairs.
- \Box Z -> μμ , Z-> ττ have the same rate.

Data and MC used in this analyses

- ☐ Data collected by ATLAS detector in late 2010.
- ☐ The proton beam had energy of 3.5 TeV.
- ☐ The integrated luminosity of the machine was 36 pb⁻¹.
- ☐ MC sample generated by using PYTHIA.

The Z decays in Muon Channel

Number of muons

 $\overline{\text{High } p_T}$ selection

Cosmic muon rejection

ID hit requirements

Pair of good muons

Invariant mass

Opposite charge

Isolation

Selection on η

Type of muon

Selection

- ☐ Initial criteria approved quailed events for the study.
- ☐ The authenticity of the muon is checked. Only muons that have expected properties of muons from Z decays selected and muons from backgrounds are rejected.
- ☐ Events that carry the specific Z properties passed.

Cut Efficiency

Event selection		Data	MC		
Requirement	Number of Events	Cut Efficiency Compare to Prev.	Number of Events	Cut Efficiency Compare to Prev.	
Total Number of events	1 857 054	100%	494 926	100%	
Collision Event Selection	1 647 095	88.69%	_	_	
Pair of Muons	725 512	44.04%	324 815	65.63%	
Pair of Good Muons	12 006	1.65%	183 076	56.36%	
Invariant Mass	11 250	93.70%	177 724	97.07%	
Opposite Charge	11 246	99.96%	177 716	99.99%	

Event Selection 1

Muon Selection

Collision event selection data quality information coded in Good Run Lists

number of B layer Hits > 0

number of the hits at Pixel > 1 number of the hits at SCT ≥ 6

number of pixel holes + number of SCT holes < 3

 $\sum p_T^{ID}/p_T < 0.2$ tracks inside cone of 0.4

Event Selection II

 $66 < m_{uu} < 116 \,\text{GeV}$

 $Charge_{\mu_1} + Charge_{\mu_2} = 0$

 $|\eta| \le 1.9 \rightarrow \text{Hits} + \text{Outliers} > 5 \text{ and } \frac{\text{Outliers}}{\text{Hits} + \text{Outliers}} > 0.9$

at least two good muons that pass all muon selection criteria

 $|\eta| > 1.9$ for (Hits + Outliers > 5) $\rightarrow \frac{Outliers}{\text{Hits+Outliers}} < 0.9$

 $p_T > 20 \text{ GeV}$

 $|\eta| < 2.4$

CB muon

Reconstructed the Z Properties

The Invariant Mass

The Invariant Mass:

- ☐ MC 91.18 GeV☐ Data 90.13 GeV
- ☐ established value for Z mass
- is 91.187 GeV

The Cross Section of the Z decays in Muon channel

- ☐ The Z boson decay cross section in the fiducial volume of the detector is measured by using formula (1).
- ☐ The total cross section was extrapolated by formula (2).
- The correction factor
 C and the acceptance
- factor which are used in the (1),(2)
- from the (3) and (4).
- ☐ The measured crosssection are presented in the following Table.

$\sigma_{fid} =$	$\frac{N_{Z^0}^{sig}}{C_{Z^0} \cdot L_{int}}.$	(1

$$\frac{N_{MC,rec}}{N_{MC,gen,cut}}. \quad (3) \quad A_{Z^0} = \frac{N_{MC,gen,cut}}{N_{MC,gen,all}}. \quad (4)$$

 $\sigma_{tot} = \sigma_{Z^0} \times BR(Z^0 \to \mu^- \mu^+) =$

	value	stat	syst	lumi	
Fiducial Cross-Section σ_{fid}					
Total Cross-Section σ_{tot}	0.828	± 0.009	± 0.035	± 0.028	(nb)

The Z decays in tau-lepton channel

Selection

- ☐ Initial criteria approved quailed events for the study.
- ☐ The authenticity of the tau-lepton is checked.
- Events that carry the specific Z properties passed.

Event Selection I Collision event selection data quality information coded in Good Run Lists Number of τ -leptons τ —leptons Selection $E_T > 20 \text{ GeV}$ High E_T selection $|\eta| < 2.5$ Selection on η Number of track This criterion distinguishes and rejects the τ -candidate which decays Electron and Muon veto leptonicly and select only τ -candidate that decays hadronicly. to distinguish the jet which is disguised as a τ -lepton Rejection of jet Charge of τ -candidate **Event Selection II** at least two good τ -candidates is presented in the sample Pair of good τ —leptons after passing all τ -leptons selection criteria $Charge_{\tau_1} + Charge_{\tau_2} = 0$ Opposite charge

Selected Tau-lepton Properties

☐ Plots suggest there are considerable background events after selection.

Conclusion

Since the measurement of Z-> $\mu\mu$ cross section agrees with theoretical prediction. This indicates that Z-> $\tau\tau$ cross section should be well described by theory and can be used to predict the Z-> $\tau\tau$ rate in ATLAS.