

Search for a Light Charged Higgs Boson in $H^+ ightarrow c\overline{s}$ Channel Using ATLAS Data

Omran Trifis^a, Alex Martyniuk^b, Mark Owen^a, Un-ki Yang^a; a: The University of Manchester, UK. b: The University of Victoria,

Introduction:

- The Standard Model (SM) predicts a neutral massive gauge boson (the Higgs boson) Beyond the SM, two Higgs-doublet models (2HDM) such as the Minimal Supersymmetric Standard Model
- (MSSM) -> five physical Higgs bosons; h^0 , H^0 , A^0 , H^{\pm} .
- Discovery of neutral Higgs boson Any evidence of H[±] is an evidence of new physics beyond the SM.
- LEP excluded any charged Higgs boson up to 80GeV.
- In Hadron Colliders, search for charged Higgs boson in association of the top quark has been performed.
- Treatron limits on the branching ratio of the top quark decay to b+H² = 0.20% (depending on the H² matching). LHC limits are: $H^+ \rightarrow \tau \nu$ channel between 7-1% (ATLAS) but $H^+ \rightarrow c\bar{s}$ channel still 20-10% (depending
- on the H[±] mass).

The Analysis in Brief

b.jet

- Search for charged Higgs boson (H⁺) from top quark decays where H^{\dagger} decays to $c\bar{s}$ producing two jets in the detector.
- Complementary to v channel which is dominant at high tanβ. Select semi-leptonic ttbar events: use
- high p_T lepton (e/ μ), large E_T^{miss} with 4 jets two (1 or 2-btag) Fully reconstruct the tT event using
- kinematic χ2 fitter to improve the di-jet mass resolution and increase signalbackground separation power.

b.jet

Event Selection, Reconstruction and the Fitter

- Use MC samples for signal and background The H° signal are 90, 100, 110, 120, 130, 140 & 150 GeV mass points.
- ۶ Major backgrounds include; SM tt, Single Top, W+jets (light jets and heavy flavour jets), di-boson
- and QCD. Apply a set of optimized event selection cuts.
- Selected events are used as an input to the kinematic χ^2 fitter.
- In The Fitter:
- Constrain the values of the Leptonic W boson mass and the top pair masses to be their PDG values. Allow the measured $P_{\rm T}$ values to vary within their uncertainties.
- Use information to provide a neutrino p₂ solution and correct jet combination.
- From the Fitter:
- Remove badly reconstructed ttbar events using a cut on the χ^2 value. Significantly reduce the background events.
- Provide a greater resolving power between ttbar and signal MC.

The χ^2 function:

- $\chi^2 = \sum_{i=1,i \neq ts} \frac{(p_j^{\text{rfit}} p_i^{\text{tmeas}})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{\text{SE}j,\text{fit}} p_j^{\text{SE}j,\text{fmeas}})^2}{\sigma_{\text{SE}j}^2} + \sum_{k=jjb,blv} \frac{(w_k M_{top})^2}{\sigma_{\text{Cop}}^2} + \frac{(M_{tv} M_{W})^2}{\sigma_{W}^2}$
- First term is to allow the p_T of the jets and lepton be changed within their resolutions. Second term allows the rescaling of the sum of extra jets energy (SEJ) defined as a quantity absorbing
- all jet E_r not associated with the lepton or the four leading jets and is used to re-calculate the E_T^{miss} . Third term constrains the masses of the top pair to $M_{top} = 172.5$ GeV.
- Fourth term constrains the mass of the leptonic W to M_W = 80.42 GeV

The improvement in the reconstructed di-jet mass due to the fitter for SM $t\bar{t}$ and signal $m_{H^+}=130~GeV$ (MC)

Analysis with $35pb^{-1}$ of ATLAS Data ($\geq 1 b$ -tag)

- In 2010 ATLAS recorded more than 35pb-1 of physics data
- Apply a ≥ 1 b-tag and loser $\chi 2$ cut to enhance our signal.
- Total data events (323) agree with the SM expectation within error. The expected number of SM ttbar, non-ttbar background and the case of $\,m_{\rm H^+}=110 GeV$ signal with Br = 10% are shown in the following table.
- Expected and observed limits are comparable with the Tevatron limits with a factor of 30 to 60 less luminosity.

Channel	Muon	Electron
Data	193	130
$SM t\bar{t} \rightarrow W^+ b W^- \bar{b}$	156+24	106^{+16}_{-20}
W/Z + jets	17 ± 6	9±3
Single top	7 ± 1	5±1
Diboson	0.30 ± 0.02	0.20 ± 0.02
QCD multijet	11 ± 4	6±3
Total Expected (SM)	191^{+26}_{-30}	127+17
$\mathcal{B}(t \rightarrow H^+ b) = 10\%$:		
$t\bar{t} \rightarrow H^+ b W^- \bar{b}$	20^{+3}_{-4}	14^{+2}_{-2}
$t\bar{t} \rightarrow W^+ b W^- \bar{b}$	127^{+19}_{-23}	86+13
Total Expected ($\mathcal{B} = 10\%$)	181+21	120+14

Data-MC Comparison

Dijet mass distributions of the data is compared with the SM expectation (MC) (left) with Br = 0.30 for m_{H^+} = 90 GeV;(right) with Br = 0.18 for m_{H^+} = 110GeV

Higgs Mass	Expected limit	Observed
90 GeV	0.30	0.25
110 GeV	0.18	0.15
130 GeV	0.17	0.14

Analysis with 35pb⁻¹ of ATLAS Data (2 b-tag)

- The efficiency of the 2 b-tag cut is about 30% for both channels.
- > Total data events 92
- Good discriminating power for some backgrounds (single top, W + jets). Good agreement between data and SM expectation in both channels (electron left and muon right).
- Statistically limited

۶

Prospects of Analysis with 4.7fb⁻¹ of ATLAS Data

- Sufficiently high statistics to apply 2b-tag and a tighter $(\chi^2 < 10)$ cut to Þ reduce the background rate and improve signal-background separation power (expect ~14K events).
- However, the effect of systematic uncertainties becomes dominant Many sources of systematic uncertainties that affect the signal acceptance and/or the shape of the reconstructed di-jet mass.
- Try different techniques to estimate the effect of these uncertainties. The expected limits will be between several percent to 1% depending on
- the H⁺ mass. Results are in the collaboration review and will be public within a month.