

Standard Model @ Hadron Colliders VI. W/Z + Jets (cont)

27.08.2012

Peter Mättig, Scottish Summer School 2012

Example: W + 3 Jets

A QCD process theoretically quite well understood Important background for many BSM/Higgs processes

Z & W + jets should have the same topology
Simple minded approach

 $\mathbf{R}(\mathbf{n}) = \frac{\sigma(\mathbf{V} + (\mathbf{n} + \mathbf{1}) \text{ jets})}{\sigma(\mathbf{V} + \mathbf{n} \text{ jets})} = \alpha_{\mathbf{s}} = \text{ constant}$

,Berends – Giele' scaling

Can be tested for the first time with high statistics and many jets

W/Z + Jets

Test of Berends – Giele: Fairly well confirmed, note model dependence

W/Z + Jets

Z and W production fairly equal dependence in jet multiplicity However, Z jets have harder p_T spectrum Note: some deficiencies of simulation?

27.08.2012

W/Z + bottom Jets

Similar for W/Z

Much larger Zbb cplg. than Wcb

The virtue of measuring these processes:

- > understand background for processed like top pairs, V+H(bb)
- Potential for measuring (charm) + (bottom) pdf

CMS measurement (within cuts) $\sigma(Z+b+X) = 5.84\pm 0.08 \text{ (stat.)} \pm 0.72 \text{ (syst.)}^{+0.25}_{-0.44} \text{ (theory) pb}$ $\sigma(Z+bb+X) = 0.37\pm 0.02 \text{ (stat.)} \pm 0.07 \text{ (syst.)} \pm 0.02 \text{ (theory) pb}$ Matrix element calculations in agreement cp. Inclusive Z – production ~ 1 nb

W vs. Z + bottom Jets

W+b

W+c

W+light

multi-iet

Single t op

Other EW

 $L dt = 35 \text{ pb}^{-1}$

— Data 2010.√s=7 TeV

£²10⁴

10

10³

10²

10

-0.5 0 0.5 1 1.5

4 5 4

ATLAS

 $L dt = 36 \text{ pb}^{-1}$

Ever

BERGISCHE UNIVERSITÄT WUPPERTAL

Fraction of bottom larger in Z⁰ events

Data 2010 (\s = 7 TeV)

 $Z(\rightarrow \mu^+\mu^-) + b$

Z(→μ⁺μ¨) + c

 $Z(\rightarrow \mu^+\mu) + \text{light}$

 $Z(\rightarrow \tau \tau) + iets$

Diboson

Single top

2 2.5

 $W(\rightarrow \mu \nu) + jets$

3

3.5 4 4. ≥ N(tagged jets)

4.5

Properties of bsystem in Z⁰ events agree with expectation

27.08.2012

Number of Events

10⁵

10⁴

 10^{3}

10²

10

-0.5 0

0.5

1 1.5

2 2.5 3 3.5

ATLAS

Muon + 1 or 2 Jets

Peter Mättig, Scottish Summer School 2012

Search for deviations from Drell – Yan prediction

Many models predict ,excited Z'

No resonance structure found:

M_{z'} > 2 TeV (depending on model for new physics) Note: could also be used to probe (qqll) compositeness

Drell – Yan at the TeV scale: $\mu\nu$

Search for deviations from Drell – Yan prediction

Many models predict ,excited W'

No resonance structure found: M_{z'} > 2.5 TeV (depending on model for new physics)

Standard Model @ Hadron Colliders VII. Electroweak effects with W/Z

Peter Mättig, Scottish Summer School 2012

Polarisation of W

BERGISCHE UNIVERSITÄT WUPPERTAL

Assume production of W⁺ by valence u – quark:

At LHC

High y: u – quark valence quarks → W Spin against flight direction Central y: u – quark sea quarks → Both W helicities

Additional modifications due to QCD effects \rightarrow high p_T also W_{Long}

$$\frac{d\sigma}{d(p_{T}^{W})^{2}dy_{W}d\cos\theta d\phi} = \frac{3}{16\pi}\frac{d\sigma^{u}}{d(p_{T}^{W})^{2}dy_{W}} \times \left[(1+\cos^{2}\theta) + \frac{1}{2}A_{0}(1-3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos 2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta + A_{5}\sin^{2}\theta\sin 2\phi + A_{6}\sin 2\theta\sin\phi + A_{7}\sin\theta\sin\phi\right] (1)$$

Compress into helicity components

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{3D}} = \frac{3}{8} f_{L} (1 - \cos\theta_{3D})^{2} + \frac{3}{8} f_{R} (1 + \cos\theta_{3D})^{2} + \frac{3}{4} f_{0} \sin^{2}\theta_{3D}$

Detector effects

Peter Mättig, Scottish Summer School 2012

Measurement of W polarisation

Measurement 2D angle instead of 3D

Expected differences between W⁺ and W⁻

Good agreement with NLO simulation

W – helicity important ingredient for other measurements

Polarisation of Z⁰

BERGISCHE UNIVERSITÄT WUPPERTAL

,slight' preference for $\mu^{\scriptscriptstyle -}$ in up – quark direction

Forward – Backward Asymmetry @ Z⁰

BERGISCHE UNIVERSITÄT WUPPERTAL

Central rapidity range: no clearly defined u/d direction

Jow' asymmetry

Valence quarks at high y →,high' asymmetry

Less precise than LEP Sensitivity to higher masses → additional sensitivity to new resonances

The W mass

BERGISCHE UNIVERSITÄT WUPPERTAL

Fundamental parameter of the Standard Model

$$\mathbf{G}_{\mu} \;=\; \sqrt{2} \cdot rac{\mathbf{g^2}}{\mathbf{8} \cdot \mathbf{M^2_W}}$$

$$\frac{\pi\alpha}{\sqrt{2}} \frac{\mathbf{I}}{\mathbf{M}_{\mathbf{w}}^{2} \cdot \sin^{2}\theta_{\mathbf{w}}}$$

 G_µ given by lifetime of µ
 → yields prediction for M_W
 Radiative corrections ∆r
 → sensitivity to mass of Higgs boson

Precise measurement @ LEP: 80.376 ± 0.033 GeV $\mathbf{G}_{\mu} = \frac{\pi \alpha}{\sqrt{2}} \frac{1}{\mathbf{M}_{\mathbf{W}}^{2} \sin \theta_{\mathbf{W}}} \frac{1}{1 - \Delta \mathbf{r}}$

Mass determination at hadron coll.

Determination with electron/muon and neutrino

$$\mathbf{M}_{\mathbf{W}} = (\mathbf{E}_{\mathbf{l}} + \mathbf{E}_{\nu})^{\mathbf{2}} - (\tilde{\mathbf{p}}_{\mathbf{l}} + \tilde{\mathbf{p}}_{\nu})^{\mathbf{2}}$$

But:

> How well is the energy scale e/μ known?

 \succ ... and what is the energy and direction of v?

 Use well known M_z to calibrate energy scale
 consider only transverse momentum of v identify with ,missing transverse energy'

 $\mathbf{M}_{\mathbf{W}}^{\mathbf{2}} = (\mathbf{E}_l + \mathbf{E}_{\nu})^{\mathbf{2}} - (\mathbf{\tilde{p}}_l + \mathbf{\tilde{p}}_{\nu})^{\mathbf{2}} > (\mathbf{E}_l + \mathbf{MET})^{\mathbf{2}} - (\mathbf{\tilde{p}}_l + \mathbf{M\widetilde{ET}})^{\mathbf{2}}$

W mass at hadron coll.

Reflects phase space in spherical decay: Largest if decay perpendicular to flight direction

Jacobian peak

BERGISCHE UNIVERSITÄT WUPPERTAL

Relation mass **+ >** lepton transverse momentum

$$p_T = \frac{1}{2} M_W \cdot \sin \theta^* \Rightarrow \cos \theta^* = \sqrt{1 - 4 \cdot p_T^2 / M_W^2}$$

Cross section section \rightarrow pole at $p_T = M_w/2$

$$\frac{d\sigma}{dp_T^2} = \frac{d\sigma}{d\cos\theta^*} \frac{2/M_W}{\sqrt{M_W^2 - 4 \cdot p_T^2}}$$

damped by natural width of W - boson

$$\frac{d\sigma}{dM_{e\nu}dp_T^2} \propto \frac{\Gamma_W M_W}{(M_{e\nu}^2 - M_W^2)^2 + \Gamma_W^2 M_W^2} \frac{1}{M_W^2 \sqrt{1 - 4p_T^2/M_W^2}} \frac{d\sigma}{d\cos\theta^*}$$

Reality: Jacobian peak smeared out

BERGISCHE UNIVERSITÄT WUPPERTAL

Fast drop around M_w/2 but
smeared out
W – boson: Γ ~ 2 GeV
QCD effects
detector distortions

Experimental challenge: Keep systematic uncertainties under control

				7/14/
ovni	OIT	cimii	arity	
CAPI		JIIII		∠ / vv

M_w = 80.342±0.014 GeV

Z⁰ measurement: excellent control of energy scale

Measure Z⁰: calibrate such that $M_7 = 91.1882 \text{ GeV}$

Source of uncertainty: energy resolution

Source of uncertainty: p_T of W - boson

p_T(W) ~ p_T(Z) But different couplings, (small) sensitivity to pdfs Again: Z⁰ measurement provides excellent knowledge of QCD distortions

Two other methods

BERGISCHE UNIVERSITÄT WUPPERTAL

80.355±0.015

80.371±0.013

Models used to estimate the transfer Z **→** W

2			
	ΔM_W (MeV)		
Source	m_T	p_T^e	E _T
Electron energy calibration	16	17	16
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	5	6	14
Electron efficiencies	1	3	5
Backgrounds	2	2	2
Experimental Subtotal	18	20	24
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
Production Subtotal	13	14	17
Total	22	24	29

TABLE II: Systematic uncertainties of the M_W measurement.

Note: Measurements are to ~ 74% correlated

D0 measurement M_w = 80.375 ± 0.023 GeV

W mass result

BERGISCHE UNIVERSITÄT WUPPERTAL

D0 measurement same precision as previous world average

A huge achievement after 20 years of work! High precision possible at proton colliders Strong constraint on Standard Model Higgs: mass ,known'

Standard Model @ Hadron Colliders VIII. Triple Gauge Coupling

27.08.2012

Peter Mättig, Scottish Summer School 2012

Looking for TGVs (Triple Gauge Boson Vertices)

BERGISCHE UNIVERSITÄT WUPPERTAL

Vector Boson self interaction due to electrically and weakly charged bosons

Note connection to EWSB: $W_L W_L \rightarrow W_L W_L$ scattering leads to unitarity problem ~ 1 TeV \rightarrow regularised by Higgs

Boson pairs also due to quark exchange

Intricate relation of quark/boson couplings

Gauge Boson production in e⁺e⁻

BERGISCHE UNIVERSITÄT WUPPERTAL

Without Z⁰: cross section infinite

Early motivation to introduce Z⁰

(N.B. general & succesfull recipe: postulate new particles to avoid infinities)

But are couplings as predicted?

Modify g_1 , κ , λ and see if prediction agrees with data

- Potential deviations of g_1 , λ grow with M^2_{WW}
- Potential deviations of κ grow with M_{ww}

High mass reach at hadron colliders: special sensitivity to g_1 , λ

LEP legacy

Peter Mättig, Scottish Summer School 2012

pp – colliders: selecting ZW events

BERGISCHE UNIVERSITÄT WUPPERTAL

Select events with three hard leptons + missing E_{T}

Step 1: select $Z^0 \rightarrow e^+e^-, \mu^+\mu^-$

Step 2: in residual event look for mass of lepton & MET

Test at hadron collider

Look at various final states

W+γ

ATLAS

0.2

0

 λ_{γ}

-0.4

 $\Delta \kappa_{\gamma}$

-0.2

95% CL intervals

ATLAS(1.02 fb⁻¹, Λ =2 TeV)

ATLAS (1.02 fb⁻¹, $\Lambda = \infty$)

D0 (4.2 fb⁻¹, Λ =2 TeV)

2

0.6

0.8

CMS (36 pb⁻¹, Λ=∞) I FP

0.4

p...... . . .

0

-0.6

-0.4

-0.2

المتعلما

0.2

0.4

0.6

W+W

LHC experiments starting to become competative! No deviations observed: strong support for gauge theories

W+Z

Standard Model @ Hadron Colliders IX. Top Quark: general statements

Peter Mättig, Scottish Summer School 2012

The mysterious (?) top quark

Top quark: no internal structure but heavy as a gold atom

 $\mathbf{M_t} = \mathbf{173.3} \pm \mathbf{1.1 GeV}$

i.e. coupling strength to Standard Model Higgs Boson

Natural couplingand all other fermions are ,unnatural'? Does the top quark have a special role in particle physics?

A brief history of the top quark

Known to exist since 1973 Phenomenological prejudice: around 15 GeV (N.B. (ss) = 1 GeV, (cc) = 3.1 GeV, (bb) = 9.4 GeV, (tt) = 30 GeV ??????)

(Partly) motivating aim for several accelerators: e⁺e⁻: PETRA/PEP, TRISTAN, LEP, pp: SppS No signature found!

Observed in 1995 at Tevatron Up to now a few thousand tt events

LHC currently produces ~ 50000 tt events/day When default energy/luminosity reached: close to 1M/day A brief history of the top quark II

Electroweak quantum fluctuations at percent level: top must be very heavy

Precision measurements & theory in 1994

 $\mathbf{M_t} = \mathbf{178.8} \pm \mathbf{20GeV}$

Phenomenology of heavy top

BERGISCHE UNIVERSITÄT WUPPERTAL

h

competing interactions:

For lighter quarks: strong interaction >> weak interactions → colour neutral hadrons

b

For top quark:

99.1% of all top quarks decay into a bottom quark!

Phenomenology of heavy top

Decay properties of top quark unambigously predicted by SM

Top Pair Decay Channels

- tt → (only) 6 quarks largest fraction, very high background
- tt → 4 quarks, charged lepton, neutrino Some 30% ,usable', low background FAVOURED channel
- tt → 2 quarks, 2 charged I, 2 neutrinos Only 5% ,usable', very low background, difficult to reconstruct

Decay fractions largely determined by fractions of W - decay

Channels and measurements

Observable	t> b Iv	t>b qq	
Charge sign	yes	difficult	
momentum	with constraint	yes	
Helicity	yes	no	
mass	with constraint	yes	

Most analyses can be performed with both decay types, however, clear differences in expected performance

A semileptonic tt event

Standard Model @ Hadron Colliders X. Top Quark: production

Peter Mättig, Scottish Summer School 2012

Production of top quarks

What x required for top production?

0.18 at Tevatron

0.05 at LHC (0.025 @ 14 TeV)

Dominant at LHC for low M_{tt} **Suppressed @ Tevatron**

Relevant at LHC for high M_{tt} Dominant @ Tevatron

How to measure tt cross section

BERGISCHE UNIVERSITÄT WUPPERTAL

(Why should we?): Sensitive to gluon –tt couplings Test of QCD with massive quarks

Cross section determination

Experimental precision depends on how well - background, efficiency, luminosity can be controlled

Key issue determine efficiency

Largest uncertainties:

- Jet energy scale
- bottom identification
- Background yield
- Jets from QCD
- selection efficiency
 - e, μ,

Experimental uncertainty ~ 9% Luminosity uncertainty ~ 4.4 %

Background estimatation

Dominant background: W + 4 jets > same final objects

- assume QCD generators to be correct, i.e templates
- data driven method (ATLAS):
 - tt events: same number of W⁺, W⁻

W+jets method: more W⁺ than W⁻

$$\begin{split} (\mathbf{N}_{\mathbf{W}^+} + \mathbf{N}_{\mathbf{W}^-})^{\mathbf{exp}} &= \left(\frac{\mathbf{r}_{\mathbf{MC}} + 1}{\mathbf{r}_{\mathbf{MC}} - 1}\right) (\mathbf{N}_{\mathbf{W}^+} - \mathbf{N}_{\mathbf{W}^-})^{\mathbf{data}} \\ \mathbf{r}_{\mathbf{MC}} = \mathbf{N}_{\mathbf{W}^+} / \mathbf{N}_{\mathbf{W}^-} \end{split}$$

→Further step: estimate W+b(b)+2 jets fraction based on bottom tagging in W+2jets → extrapolated to 4 jets via MC

Other background: QCD with b→ lepton with high x_{Feynman} Estimate from ,non – isolated' leptons

Background in semileptonic tt

Contribution to sample no b – tag S/B ~ 1/3

BERGISCHE

UNIVERSITÄT

W+Jets/tt ~ 1.4

Contribution to sample with b – tag S/B ~ 4 W+Jets/tt ~ 0.15 price: somewhat reduced statistics Wb+jets more uncertain

Dileptons + fully hadronic

BERGISCHE UNIVERSITÄT WUPPERTAL

Dileptonic: Very pure tt – sample Note: for X-section no need to use any other property ... But loss in statistics

Fully hadronic: Huge QCD background Advantage: M(t), M(W) → Kinematic fit

Summary of Xsection

Dileptonic and semi-leptonic measurements similar precision All hadronic larger errors Experiments have smaller uncertainty than theoretical calculation

Cross section measurement

BERGISCHE UNIVERSITÄT WUPPERTAL

Very good agreement between data and expectation