

BERGISCHE UNIVERSITÄT WUPPERTAL

Standard Model @ Hadron Colliders X. Top Quark: production (cont.)

Peter Mättig, Scottish Summer School

A semileptonic tt event

Is the top quark a normal fermion?

Production of top quarks

BERGISCHE UNIVERSITÄT WUPPERTAL

What x required for top production?

 $\sqrt{x_1\cdot x_2} \geq \frac{2\cdot M_t}{E_{pp}} \quad \label{eq:constraint} \left\{ \begin{array}{c} \text{0.18 at Tevatron} \\ \text{0.05 at LHC (0.025 @ 14 TeV)} \end{array} \right.$

Dominant at LHC for low M_{tt} Suppressed @ Tevatron

Relevant at LHC for high M_{tt} **Dominant @ Tevatron**

How to measure tt cross section

BERGISCHE UNIVERSITÄT WUPPERTAL

(Why should we?): Sensitive to gluon –tt couplings Test of QCD with massive quarks

Cross section determination

BERGISCHE UNIVERSITÄT WUPPERTAL

Experimental precision depends on how well - background, efficiency, luminosity can be controlled

Key issue determine efficiency

Largest uncertainties:

- Jet energy scale
- bottom identification
- Background yield
- Jets from QCD
- selection efficiency
 - e, μ,

Experimental uncertainty ~ 9% Luminosity uncertainty ~ 4.4 %

Background estimatation

BERGISCHE UNIVERSITÄT WUPPERTAL

Dominant background: W + 4 jets -> same final objects

- assume QCD generators to be correct, i.e templates
- data driven method (ATLAS):

tt – events: same number of W⁺, W⁻

W+jets method: more W⁺ than W⁻

$$\begin{split} (\mathbf{N}_{\mathbf{W}^+} + \mathbf{N}_{\mathbf{W}^-})^{\mathbf{exp}} &= \left(\frac{\mathbf{r}_{\mathbf{MC}} + 1}{\mathbf{r}_{\mathbf{MC}} - 1}\right) (\mathbf{N}_{\mathbf{W}^+} - \mathbf{N}_{\mathbf{W}^-})^{\mathbf{data}} \\ \mathsf{r}_{\mathsf{MC}} &= \mathsf{N}_{\mathsf{W}^+} / \mathsf{N}_{\mathsf{W}^-} \end{split}$$

→Further step: estimate W+b(b)+2 jets fraction based on bottom tagging in W+2jets → extrapolated to 4 jets via MC

Other background: QCD with b→ lepton with high x_{Feynman} Estimate from ,non – isolated' leptons

Background in semileptonic tt

BERGISCHE UNIVERSITÄT WUPPERTAL

Contribution to sample no b – tag S/B ~ 1/3 W+Jets/tt ~ 1.4

Contribution to sample with b – tag S/B ~ 4 W+Jets/tt ~ 0.15 price: somewhat reduced statistics Wb+jets more uncertain

Dileptons + fully hadronic

BERGISCHE UNIVERSITÄT WUPPERTAL

Dileptonic: Very pure tt – sample Note: for X-section no need to use any other property ... But loss in statistics

Fully hadronic: Huge QCD background Advantage: M(t), M(W) → Kinematic fit

Summary of Xsection

BERGISCHE UNIVERSITÄT WUPPERTAL

Dileptonic and semi-leptonic measurements similar precision All hadronic larger errors Experiments have smaller uncertainty than theoretical calculation

Cross section measurement

BERGISCHE UNIVERSITÄT WUPPERTAL

Theoretical uncertainty 7-10% partly NNLO

Theory & experiment uncertainty about equal

Very good agreement between data and expectation

Tevatron fwd-bkw asymmetry

Standard Model: small asymmetry

BERGISCHE UNIVERSITÄT WUPPERTAL

C = +1

Dominant production @ Tevatron → charge direction ,lost' LO: no asymmetry in Standard Model

C= -1

NLO: Interference -> small A_c

Standard Model: (4.8+-0.5)%

Tevatron: larger asymmetry

BERGISCHE UNIVERSITÄT WUPPERTAL

Low mass: consistent with Standard Model Masses > 450 GeV 3 – 4 σ deviation from expectation

BERGISCHE UNIVERSITÄT WUPPERTAL

Note: These are earlier CDF results!!

Low mass: consistent with Standard Model Masses > 450 GeV 3 – 4 σ deviation from expectation (CDF)

A glimpse of multi – TeV physics?

BERGISCHE UNIVERSITÄT WUPPERTAL

BSM interpretation:

asymmetry due to interference high mass particle + Standard Model

Type 1: Gluon with axial coupling

Type 2: t -channel **Colour neutral** vector with FCNC

Type 3: t -channel coloured scalar with FCNC

Such massive particles should become visible @ LHC

tt – asymmetries @ LHC

BERGISCHE UNIVERSITÄT WUPPERTAL

Differences: pp – collider, symmetric initial state

Tevatron \rightarrow LHC qq \rightarrow tt to gg \rightarrow tt

Peter Mättig, Scottish Summer School

tt – asymmetries @ LHC

Interpretation in models

BERGISCHE UNIVERSITÄT WUPPERTAL

For concrete model: compare Tevatron & LHC vary mass and couplings of new particles

Many of the ,Tevatron' allowed models disfavoured by ATLAS (and CMS)

Jets in top events

BERGISCHE UNIVERSITÄT WUPPERTAL

QCD effects imply a potential strong bias to studies

Jet multiplicities: Deficiencies at higher N_{jets}

Production properties: p_T and y of tt – system Good description by QCD calculations

Mass spectrum of tt - events

BERGISCHE UNIVERSITÄT WUPPERTAL

p_T of top quarks & mass of tt – pairs predicted by QCD

required

Production properties: e.g. M_{tt}

Fat jet & substructure

BERGISCHE UNIVERSITÄT WUPPERTAL

Highly boosted tops: close by jets → ,Fat jet' of R = 1.0

Require: M_{fat jet} > 100 GeV

Next step: look for substructure
➤ use k_T jet finder to ,uncluster'
➤ d_{ii} > (40 GeV)²

Require opposite jet/lepton

Non-boosted

boosted

Possible improvements: trimming of jets: Reject any subjet with some $p_{T,i}/p_{T,jet} < f_{cut}$

Models predict resonances $X \rightarrow tt$

spin [ħ]	colour represen- tation	$\frac{\rm parities}{(1,\gamma_5)}$	type	Interference	example
0	[1]	(1,0)	scalar colour singlet	+	SM, MSSM, 2HDM
0	[1]	(0,1)	pseudoscalar colour singlet	+	MSSM, 2HDM
0	[8]	(1,0)	scalar colour octet		$ ext{techni-}\pi^0$
0	[8]	(0,1)	pseudoscalar colour octet		$ ext{techni-}\pi^0$
1	[1]	(SM,SM)	excitation of Z^0		sequential Z'
1	[1]	(1,0)	vector colour singlet		
1	[1]	(0,1)	axial vector colour singlet		
1	[1]	(1,1)	left-handed vector colour singlet		
1	[1]	(1,-1)	right-handed vector colour singlet		
1	[8]	(1,0)	vector colour octet		coloron, KK gluon
1	[8]	(0,1)	axial vector colour octet		axigluon

Models predict resonances X→tt

BERGISCHE UNIVERSITÄT WUPPERTAL

Higher masses: long tails due to gg/qq luminosity

Example: 5 dim theories, Randall – Sundrum etc. predict Kaluza – Klein gluons

No significant resonance → M_{KK} > 1.5 TeV

tt + Z/W events

BERGISCHE UNIVERSITÄT WUPPERTAL

Measurement of Ztt & Wtt coupling Possible resonance search or heavy quark Important background for SUSY searches

Search for

a. (Z→II)+I+b(b), → ttZ

b. equal charge lepton pair + b(b) -> ttW/Z

Expected low X- section, fair agreement with expectation

Is the top quark a normal fermion?

Mass of the top quark

BERGISCHE UNIVERSITÄT WUPPERTAL

A fundamental parameter of the Standard Model

A broad spectrum of decays and methods

Note: first time a quark mass can be measured directly

(Lighter quarks to be inferred indirectly from hadron masses)

Top mass from I+jet decays

BERGISCHE UNIVERSITÄT WUPPERTAL

Favoured topology: $t\bar{t} \rightarrow 4$ Jets (2 b –jets) + e/ μ + v

The problems:

- How to get the z component of ν
- Out of 4 (or more) jets: which jet belongs to which top?
- What is the energy scale of jets (and electrons)

Problem 1: $p_z(v)$

BERGISCHE UNIVERSITÄT WUPPERTAL

Constraint from W - mass

$$\begin{split} \mathbf{M}_{\mathbf{W}}^{2} &= (\mathbf{E}_{l} + \mathbf{E}_{\nu})^{2} - (\mathbf{p}_{\mathbf{x}}(l) + \mathbf{p}_{\mathbf{x}}(\nu))^{2} - (\mathbf{p}_{\mathbf{y}}(l) + \mathbf{p}_{\mathbf{y}}(\nu))^{2} - (\mathbf{p}_{\mathbf{z}}(l) + \mathbf{p}_{\mathbf{z}}(\nu))^{2} \\ & \mathbf{E}_{\nu} = \sqrt{\mathbf{p}_{\mathbf{x}}^{2}(\nu) + \mathbf{p}_{\mathbf{y}}^{2}(\nu) + \mathbf{p}_{\mathbf{z}}^{2}(\nu)} \end{split}$$

Note: v - mass completely negligible

Quadratic equation **>** 2 solutions physics: in 70% the solution with smaller p_z correct

Problem 2: which jets?

BERGISCHE UNIVERSITÄT WUPPERTAL

Two facettes:

which top quark?

 - if more than 4 jets (initial state rad.) mostly jets with highest p_T
 - if exactly 4 jets: which belongs to

4 jets \rightarrow 4 possible assignments ($j_A j_B J_C / j_D$, $j_A j_B j_D / j_C$,) Note: if b – jets identified, reduced to 2 possibilities

Important constraints

- mass (jjj) = mass(jlv) (= M_t)
- mass (jj) = M_w

Problem 3: jet energy scale

BERGISCHE UNIVERSITÄT WUPPERTAL

Measure signals in calorimeter → derive jet energy
Implies uncertainty!
→ relates directly to top mass

$$\mathbf{M^2} = (\sum_{\mathbf{jet \ i}} \mathbf{E_{jet \ i}} + \mathbf{E_l} + \mathbf{E_{\nu}})^2 - (\sum_{\mathbf{jet \ i}} \tilde{\mathbf{p}_{jet \ i}} + \tilde{\mathbf{p}_l} + \tilde{\mathbf{p}_{\nu}})^2$$

Top – quarks offer ,self calibration' M(jj) has to be equal M_w

Change JES such that fulfilled

Still the (slightly) dominant uncertainty of M_t

Most precise: matrix method

Likelihood from different masses

BERGISCHE UNIVERSITÄT WUPPERTAL

W_A

W_c

Sum over all events and find combine weights

$$\begin{split} \mathbf{W}(\mathbf{M}_{1}(\mathbf{top})) &= \mathbf{w}_{\mathbf{A}} \cdot \mathbf{w}_{\mathbf{B}} \cdot \mathbf{w}_{\mathbf{C}} \cdot \dots = \mathbf{\Pi} \mathbf{w}_{\mathbf{i}} \Longrightarrow \mathcal{L}(\mathbf{M}_{1}(\mathbf{top})) \\ \mathbf{W}(\mathbf{M}_{2}(\mathbf{top})) &= \mathbf{w}_{\mathbf{A}} \cdot \mathbf{w}_{\mathbf{B}} \cdot \mathbf{w}_{\mathbf{C}} \cdot \dots = \mathbf{\Pi} \mathbf{w}_{\mathbf{i}} \Longrightarrow \mathcal{L}(\mathbf{M}_{2}(\mathbf{top})) \end{split}$$

Find M(top) with maximum weight

Top mass from dileptons & hadronic

BERGISCHE UNIVERSITÄT WUPPERTAL

Dileptons:

No direct mass peak visible

- → use energies of electrons (& bottom jets)
- → using MET adjust neutrino energies to yield same M_w and M_{top}

All hadrons: Fight huge background → suppress by neural network

Measurements of M_{top}

BERGISCHE UNIVERSITÄT WUPPERTAL

 $169.3 \pm 4.0 \pm 4.9$

 $174.5 \pm 0.6 \pm 2.3$

 $174.9 \pm 2.1 \pm 3.9$

 $175.5 \pm 4.6 \pm 4.6$

173.1±2.1±2.7

 $173.3 \pm 1.2 \pm 2.7$

 $172.6 \pm 0.4 \pm 1.5$

 $173.3 \pm 0.5 \pm 1.3$

 $173.2 \pm 0.6 \pm 0.8$

180

 \pm (stat.) \pm (syst.)

m_{top} [GeV]

190

Mass of the Top Quark

A lot of measurements, a lot of methods all decay channels by now better than 2 GeV! Combination 173.2±0.6±0.8 GeV

How to interpret result?

BERGISCHE UNIVERSITÄT WUPPERTAL

For Standard Model fit
,pole mass' required
Instead: all methods based on simulation of QCD effects of mass

,top quark not totally free':
colour flow - how does this affect mass determination?

Skands&Wicke

Top mass from cross section

BERGISCHE UNIVERSITÄT WUPPERTAL

Mass measurements based on MC simulation not well defined QCD corrections

Difficult to interpret in Electroweak fits

pole mass from NNLO calculations on Xsection

Current results

BERGISCHE UNIVERSITÄT WUPPERTAL

Theoretically better motivated

But errors of ~ 5 -8 GeV mostly due to theory uncertainty

note: MS – mass around 160 GeV!

Speculations about the top mass

BERGISCHE UNIVERSITÄT WUPPERTAL

Top mass and the 10¹⁸ GeV scale

Naturalness problem:
 Renormalising the Higgs mass
 Contributions to ∆m_H
 →,most relevant'
 compensate top

Higgs potential: $\lambda(m_H) = 0.125$ (+uncertainties) $\rightarrow \lambda(Q^2)$ If $\lambda < 0 \rightarrow$ universe unstable

Nice to speculate

But can we really extrapolate safely over 14 orders of magnitude?

28.08.2012

Helicity structure of top decay

BERGISCHE UNIVERSITÄT WUPPERTAL

Is the top a normal weakly decaying particle? Note: first time helicity structure of quark can be determined

W – polarisation against direction of t – quark momentum Longitudinal polarosation also possible

Polarisation reflected in decay angle of fermions

Helicity structure of top decay

BERGISCHE UNIVERSITÄT WUPPERTAL

angle related to lepton energy, M_{bl},

BERGISCHE UNIVERSITÄT WUPPERTAL

Agreement with NNLO expectation: ,no' right handed W's, most W's are longitudinal

Limits on additional couplings

BERGISCHE UNIVERSITÄT WUPPERTAL

Several BSM models → deviations General approach Effective Lagrangian: Parametrisation into higher dimension operators

Top spin correlations @ LHC

BERGISCHE UNIVERSITÄT WUPPERTAL

Bare' quark → direct information on spin configuration
 Spin correlations offer test of production of tt – pairs
 Potentially important tool to identify new particles

Close to threshold:
S = 0 state, gluon helicities likeHigh tt masses:
 $gg \rightarrow tt:$ helicity conservation $\uparrow \uparrow$ $\downarrow \downarrow$ $\downarrow \uparrow$ Top spins alignedTop spins opposite

Use leptons to identify spin directions and correlations Dilepton decay needed **→** rest system cannot be determined

a*Signal templates + b* background template = DATA

Spin correlations @ Tevatron

BERGISCHE UNIVERSITÄT WUPPERTAL

Note: Tevatron tops via qq – scattering!

Tevatron no or marginal evidence for spin correlations

Spin correlations @ LHC

BERGISCHE UNIVERSITÄT WUPPERTAL

Measure $\Delta \phi$ of leptons in transverse plane

Note experimental distortion: Alignment means on lepton low energetic

Comparison with SM expectation

BERGISCHE UNIVERSITÄT WUPPERTAL

Reconstructed asymmetries	Data	Simulation
$A_{\Delta\phi}$, inclusive region	-0.158 ± 0.010	-0.171 ± 0.002
A_{c1c2} , inclusive region	-0.062 ± 0.011	-0.087 ± 0.002
$A_{\Delta\phi}, M_{\rm t\bar{t}} > 450 { m GeV}/c^2$	-0.378 ± 0.019	-0.384 ± 0.003
$A_{c1c2}, M_{t\bar{t}} > 450 \text{ GeV}/c^2$	-0.019 ± 0.016	-0.044 ± 0.003

First significant evidence of spin correlations Agreement with Standard Model

Study of spin correlations: A method to separate new resonances from QCD continuum (?)

Single top production

BERGISCHE UNIVERSITÄT WUPPERTAL

top pairs due to strong coupling, weak coupling → single top quarks

Dominant σ (7 TeV) = 65 pb

(half of tt – Xsection)

Remember: W[±] couples to fermion doublets

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}, \ \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}, \dots, \begin{pmatrix} t \\ b \end{pmatrix}$$

Single top production

BERGISCHE UNIVERSITÄT WUPPERTAL

Allows detailed studies of the weak coupling of top quarks

- ➢ How often does W→tb (and not ts, td, or something else?) i.e. measuring CKM element |V_{tb}|
- Does the top couple completely left handed to the W? (as all other fermions do)

Example: $\mathbf{W}^+ \rightarrow \mathbf{u} \bar{d}$

Forbidden in weak interactions

> new particles, additional couplings

Combine observables

BERGISCHE UNIVERSITÄT WUPPERTAL

Several observables with moderate sensitivity: combine all information likelihood

Berlin/Dresden 2012

BERGISCHE UNIVERSITÄT WUPPERTAL

CMS: $\sigma_{t-channel}$ (7 TeV) = 70.2 ± 12.1 pb ATLAS $\sigma_{t-channel}$ (7 TeV) = 90.2⁺³²₋₂₂ pb

Observation of single top production Precision measurements to follow

Peter Mättig, Graduiertenkolleg Berlin/Dresden 2012

BERGISCHE UNIVERSITÄT WUPPERTAL

Peter Mättig, Graduiertenkolleg Berlin/Dresden 2012

BERGISCHE UNIVERSITÄT WUPPERTAL

M_{w'} > 1.2 TeV

1000

1500

2000

m_{th} [GeV]

2500

Anomalous couplings B(t→ug) < 5.7 * 10⁻⁵, B(t→cg) < 2.7 * 10⁻⁴

10⁻¹

500

Peter Mättig, Graduiertenkolleg Berlin/Dresden 2012

Conclusion

- Standard Model test a crucial element of LHC program
- Understanding SM processes pre condition for understanding detector
- Studying SM at highest energies charters new territory and may reveal New Physics
- If New Physics will turn up in ,non- SM signatures',
 SM processes still must be considered as background
- LHC: a first go on Standard Model processes statistics by the end of the year 6 – 1000x higher detailed systematic studies required but: whole new phase space can be addressed