Standard Model @ Hadron Colliders
X. Top Quark: production (cont.)
A semileptonic tt event
Is the top quark a normal fermion?

- Weak t coupling (V-A)
- CKM – elements
- Electric charge
- Top mass

- gtt couplings
- spin correlations
- tt - resonances

Peter Mättig, Scottish Summer School 2012
Production of top quarks

What x required for top production?

$$\sqrt{x_1 \cdot x_2} \geq \frac{2 \cdot M_t}{E_{pp}}$$

- 0.18 at Tevatron
- 0.05 at LHC (0.025 @ 14 TeV)

Dominant at LHC for low M_{tt}
Suppressed @ Tevatron

Relevant at LHC for high M_{tt}
Dominant @ Tevatron
How to measure $t\bar{t}$ cross section

(Why should we?):
Sensitive to gluon –$t\bar{t}$ couplings
Test of QCD with massive quarks

Select events:
- 4 jets with $p_T > 25$ GeV
- isolated electron, muon $p_T > 20$ GeV
- missing transverse energy > 20 GeV

$$\sigma_{t\bar{t}} = \frac{N_{\text{measured}} - N_{\text{background}}}{\epsilon L}$$

What fraction of $t\bar{t}$ events are retained after selection

Luminosity:
How many proton-collisions?
Cross section determination

Experimental precision depends on how well
- background, efficiency, luminosity can be controlled

Key issue determine efficiency

Largest uncertainties:
- Jet energy scale
- bottom identification
- Background yield
- Jets from QCD
- selection efficiency e, µ,
Background estimation

Dominant background: $W + 4$ jets \rightarrow same final objects
- assume QCD generators to be correct, i.e templates
- data driven method (ATLAS):
 \[\text{tt – events: same number of } W^+, W^- \]
 \[\text{W+jets method: more } W^+ \text{ than } W^- \]

\[(N_{W^+} + N_{W^-})^{\text{exp}} = \left(\frac{r_{MC} + 1}{r_{MC} - 1} \right) (N_{W^+} - N_{W^-})^{\text{data}} \]

\[r_{MC} = \frac{N_{W^+}}{N_{W^-}} \]

\rightarrow Further step: estimate $W+b(b)+2$ jets fraction based on bottom tagging in $W+2$jets \rightarrow extrapolated to 4 jets via MC

Other background: QCD with $b \rightarrow$ lepton with high x_{Feynman}

Estimate from 'non – isolated‘ leptons

27.08.2012

Peter Mättig, Scottish Summer School 2012
Background in semileptonic tt

Contribution to sample no b – tag

$S/B \sim 1/3$

$W+Jets/tt \sim 1.4$

Contribution to sample with b – tag

$S/B \sim 4$

$W+Jets/tt \sim 0.15$

price: somewhat reduced statistics

$Wb+jets$ more uncertain
Dileptons + fully hadronic

Dileptonic:
Very pure tt – sample
Note: for X-section
no need to use any other property
... But loss in statistics

Fully hadronic:
Huge QCD background
Advantage: M(t), M(W)
⇒ Kinematic fit
Dileptonic and semi-leptonic measurements similar precision
All hadronic larger errors
Experiments have smaller uncertainty than theoretical calculation
Cross section measurement

Very good agreement between data and expectation

Theoretical uncertainty 7-10% partly NNLO

Theory & experiment uncertainty about equal
Tevatron fwd-bkw asymmetry

Count
- top quarks in forward hemi \(N_{fwd} \)
- top quarks in backward hemi \(N_{bwd} \)

\[A_C = \frac{N_{fwd} - N_{bwd}}{N_{fwd} + N_{bwd}} \]
Standard Model: small asymmetry

Dominant production @ Tevatron
→ charge direction 'lost'

LO: no asymmetry in Standard Model

NLO: Interference
→ small A_C

Standard Model: (4.8±0.5)%
Tevatron: larger asymmetry

More events with $q_{\text{top}} \cdot y_{\text{top}} > 0$

Low mass: consistent with Standard Model
Masses > 450 GeV $3 – 4 \sigma$ deviation from expectation
\(A_{FB} \) vs \(m_{tt} \)

CDF Run II Preliminary \(L = 8.7 \text{ fb}^{-1} \)

- **I+Jets Data**
 \(\alpha_{M_t} = (8.9 \pm 2.6) \times 10^{-4} \)
- **NLO (QCD + EW) \(t\bar{t} + \text{Bkg} \)**
 \(\alpha_{M_t} = 2.4 \times 10^{-4} \)

Forward-Backward Top Asymmetry, %

Reconstruction Level

\(m_{\tilde{t}} < 450 \text{ GeV} \)
- DØ, 5.4 \(\text{ fb}^{-1} \):
 \(+2.5 \pm 3.1 \)
- CDF, 5.3 \(\text{ fb}^{-1} \):
 \(-2.2 \pm 4.3 \)

\(m_{\tilde{t}} > 450 \text{ GeV} \)
- DØ, 5.4 \(\text{ fb}^{-1} \):
 \(11.5 \pm 6.0 \)
- CDF, 5.3 \(\text{ fb}^{-1} \):
 \(19.8 \pm 4.3 \)
 \(26.6 \pm 6.2 \)
 \(\text{S. Frixione and B.R. Webber, JHEP 06, 029 (2002)} \)

Note: These are earlier CDF results!!

Low mass: consistent with Standard Model

Masses > 450 GeV 3 – 4 \(\sigma \) deviation from expectation (CDF)
A glimpse of multi – TeV physics?

BSM interpretation:
asymmetry due to interference high mass particle + Standard Model

Type 1: Gluon with axial coupling
Type 2: \(t \) –channel Colour neutral vector with FCNC
Type 3: \(t \) –channel coloured scalar with FCNC

Such massive particles should become visible @ LHC
tt – asymmetries @ LHC

Differences: pp – collider, symmetric initial state

Enhance qq production by large ∆y

high x valence quark on low x sea anti-quark

Tevatron → LHC
qq → tt to gg → tt

Tevatron

LHC 8 TeV

28.08.2012
Peter Mättig, Scottish Summer School
tt – asymmetries @ LHC

\[A_c = \frac{N(\Delta | y > 0) - N(\Delta | y < 0)}{N(\Delta | y > 0) + N(\Delta | y < 0)} \]
Interpretation in models

For concrete model: compare Tevatron & LHC
vary mass and couplings of new particles

Many of the 'Tevatron' allowed models disfavoured by ATLAS (and CMS)
Jets in top events

QCD effects imply a potential strong bias to studies

Production properties:
p_T and y of tt – system
Good description by QCD calculations

Jet multiplicities:
Deficiencies at higher N_{jets}
Mass spectrum of $t\bar{t}$ - events

p_T of top quarks & mass of $t\bar{t}$ – pairs predicted by QCD

,Resolved‘ four jet (+ lepton, ν)
Standard top selection

High mass region:
Boosted tops \Rightarrow merged jets
Appropriate algorithms required
Production properties: e.g. M_{tt}

'Fat jet'

Closer look shows substructure
Fat jet & substructure

Highly boosted tops: close by jets \rightarrow 'Fat jet' of $R = 1.0$

Require: $M_{\text{fat jet}} > 100$ GeV

Next step: look for substructure
- use k_T jet finder to 'uncluster'
- $d_{ij} > (40 \text{ GeV})^2$

Require opposite jet/lepton system

Possible improvements: trimming of jets:
Reject any subjet with some $p_{T,i} / p_{T,\text{jet}} < f_{\text{cut}}$

28.08.2012

Peter Mättig, Scottish Summer School
Models predict resonances $X \rightarrow \ttbar$

| spin $|h|$ | colour representation | parities $(1, \gamma_5)$ | type | Interference | example |
|---|---|---|---|---|---|
| 0 | [1] | (1,0) | scalar colour singlet | + | SM, MSSM, 2HDM |
| 0 | [1] | (0,1) | pseudoscalar colour singlet | + | MSSM, 2HDM |
| 0 | [8] | (1,0) | scalar colour octet | | techni-π^0 |
| 0 | [8] | (0,1) | pseudoscalar colour octet | | techni-π^0 |
| 1 | [1] | (SM,SM) | excitation of Z^0 | | sequential Z' |
| 1 | [1] | (1,0) | vector colour singlet | | |
| 1 | [1] | (0,1) | axial vector colour singlet | | |
| 1 | [1] | (1,1) | left-handed vector colour singlet | | |
| 1 | [1] | (1,-1) | right-handed vector colour singlet | | |
| 1 | [8] | (1,0) | vector colour octet | - | coloron, KK gluon |
| 1 | [8] | (0,1) | axial vector colour octet | | axigluon |
Models predict resonances $X \rightarrow \ttbar$

Higher masses: long tails due to gg/qq luminosity

Example:
5 dim theories, Randall–Sundrum etc. predict Kaluza–Klein gluons

No significant resonance
$\Rightarrow M_{KK} > 1.5 \text{ TeV}$

ATLAS
Simulation $\sqrt{s}=7$ TeV
- $m_1=500$ GeV
- $m_2=700$ GeV
- $m_2=1000$ GeV
- $m_3=1300$ GeV

Reconstructed \ttbar mass [GeV]

Example:
$\int L \, dt = 2.05 \text{ fb}^{-1}$

$\sigma \times \text{BR}(g_{KK} \rightarrow \ttbar) \, [\text{pb}]$

Syst.+stat. errors
- Obs. 95% CL upper limit
- Exp. 95% CL upper limit
- Exp. 1\sigma uncertainty
- Exp. 2\sigma uncertainty
- Kaluza-Klein gluon

$\sqrt{s} = 7$ TeV

28.08.2012
tt + Z/W events

Measurement of Ztt & Wtt coupling
Possible resonance search or heavy quark
Important background for SUSY searches

Search for
a. (Z→ll)+1+b(b), → ttZ
b. equal charge lepton pair + b(b) → ttW/Z

Expected low X-section, fair agreement with expectation
Is the top quark a normal fermion?

- Weak t coupling ($V-A$)
- CKM – elements
- Electric charge
- Top mass
Mass of the top quark

A fundamental parameter of the Standard Model

A broad spectrum of decays and methods

Note: first time a quark mass can be measured directly

(Lighter quarks to be inferred indirectly from hadron masses)
Top mass from l+jet decays

Favoured topology: $t\bar{t} \rightarrow 4$ Jets (2 b–jets) + e/μ + ν

$M^2 = \left(\sum_{\text{jet } i} E_{\text{jet } i} + E_l + E_\nu \right)^2 - \left(\sum_{\text{jet } i} \vec{p}_{\text{jet } i} + \vec{p}_l + \vec{p}_\nu \right)^2$

The problems:
- How to get the z – component of ν
- Out of 4 (or more) jets: which jet belongs to which top?
- What is the energy scale of jets (and electrons)

28.08.2012

Peter Mättig, Scottish Summer School
Problem 1: $p_z(\nu)$

Constraint from W - mass

$$M^2_W = (E_l + E_\nu)^2 - (p_x(l) + p_x(\nu))^2 - (p_y(l) + p_y(\nu))^2 - (p_z(l) + p_z(\nu))^2$$

$$E_\nu = \sqrt{p_x^2(\nu) + p_y^2(\nu) + p_z^2(\nu)}$$

Note: ν – mass completely negligible

Quadratic equation \rightarrow 2 solutions

physics: in 70% the solution with smaller p_z correct
Problem 2: which jets?

Two facettes:
- if more than 4 jets (initial state rad.) mostly jets with highest p_T
- if exactly 4 jets: which belongs to which top quark?

4 jets \rightarrow 4 possible assignments
$(j_A j_B j_C / j_D, j_A j_B j_D / j_C,)$

Note: if b – jets identified, reduced to 2 possibilities

Important constraints
- mass $(jjj) =$ mass$(jlv) (= M_t)$
- mass $(jj) = M_W$
Problem 3: jet energy scale

Measure signals in calorimeter \(\rightarrow\) derive jet energy
Implies uncertainty!
\(\rightarrow\) relates directly to top mass

\[M^2 = \left(\sum_{\text{jet } i} E_{\text{jet } i} + E_l + E_\nu \right)^2 - \left(\sum_{\text{jet } i} \tilde{p}_{\text{jet } i} + \tilde{p}_l + \tilde{p}_\nu \right)^2 \]

Top – quarks offer 'self calibration'
\(M(jj)\) has to be equal \(M_W\)

\(\rightarrow\) change JES such that fulfilled

Still the (slightly) dominant uncertainty of \(M_t\)

28.08.2012
Peter Mättig, Scottish Summer School
Most precise: matrix method

Theoretical pred with M_1(top)

w_1

w_2

\Rightarrow probability density for M_1
use 24 integration variables

Next step:
convolute with exptl. effects

\Rightarrow Assign weight to each event

Example: energy resolution

28.08.2012
Peter Mättig, Scottish Summer School
Likelihood from different masses

Sum over all events and find combine weights

\[W(M_1(\text{top})) = w_A \cdot w_B \cdot w_C \cdot \ldots = \Pi w_i \Rightarrow \mathcal{L}(M_1(\text{top})) \]
\[W(M_2(\text{top})) = w_A \cdot w_B \cdot w_C \cdot \ldots = \Pi w_i \Rightarrow \mathcal{L}(M_2(\text{top})) \]

......

Find M(top) with maximum weight

\[m_t = 176.0 \pm 1.3 \text{ GeV} \]
Top mass from dileptons & hadronic

Dileptons:
No direct mass peak visible
➔ use energies of electrons (& bottom jets)
➔ using MET adjust neutrino energies to yield same M_W and M_{top}

All hadrons:
Fight huge background
➔ suppress by neural network
A lot of measurements, a lot of methods
all decay channels by now better than 2 GeV!
Combination $173.2 \pm 0.6 \pm 0.8$ GeV
How to interpret result?

For Standard Model fit → 'pole mass' required
Instead: all methods based on simulation of QCD effects of mass

'top quark not totally free':
colour flow - how does this affect mass determination?

e.g. colour reconnection

Different models → mass differences of a few GeV

Skands&Wicke
Top mass from cross section

Mass measurements based on MC simulation ➔ not well defined QCD corrections

Difficult to interpret in Electroweak fits

➔ pole mass from NNLO calculations on Xsection
Current results

Theoretically better motivated

But errors of ~ 5 -8 GeV mostly due to theory uncertainty

note: MS – mass around 160 GeV!

28.08.2012
Peter Mättig, Scottish Summer School
Speculations about the top mass

Top mass and the 10^{18} GeV scale

Naturalness problem:
Renormalising the Higgs mass
Contributions to Δm_H
\Rightarrow 'most relevant' compensate top

Higgs potential:
$\lambda(m_H) = 0.125$ (+uncertainties)
$\Rightarrow \lambda(Q^2)$
If $\lambda < 0 \Rightarrow$ universe unstable

Nice to speculate
But can we really extrapolate safely over 14 orders of magnitude?

28.08.2012
Peter Mättig, Scottish Summer School
Helicity structure of top decay

Is the top a normal weakly decaying particle?
Note: first time helicity structure of quark can be determined

W – polarisation against direction of t – quark momentum
Longitudinal polarosation also possible

Polarisation reflected in decay angle of fermions
Helicity structure of top decay

\[\frac{1}{\sigma} \frac{d\sigma}{d \cos \theta^*} = \frac{3}{4} (1 - \cos^2 \theta^*) \cdot F_0 + \frac{3}{8} (1 - \cos \theta^*)^2 \cdot F_L + \frac{3}{8} (1 + \cos \theta^*)^2 \cdot F_R \]

Rather straight forward for e, \(\mu \)

For W \(\rightarrow \) qq identify q vs. \(\bar{q} \)

Challenging!

angle related to lepton energy, \(M_{bl} \),
Measurements

Agreement with NNLO expectation:
'no' right handed W's, most W's are longitudinal
Limits on additional couplings

Several BSM models → deviations

General approach Effective Lagrangian:
Parametrisation into higher dimension operators

\[\int L \, dt = 1.04 \text{ fb}^{-1} \]

\(g_L, g_R \): left/right handed coupling of dim-6 operator
Top spin correlations @ LHC

'Bare' quark \rightarrow direct information on spin configuration
Spin correlations offer test of production of tt – pairs
Potentially important tool to identify new particles

Close to threshold:
$S = 0$ state, gluon helicities like
Top spins aligned

High tt masses:
$gg \rightarrow tt$: helicity conservation
Top spins opposite

Use leptons to identify spin directions and correlations
Dilepton decay needed \rightarrow rest system cannot be determined
Experimental method

Define quantisation axis, e.g. beam

\[a \text{*Signal templates} + b \text{* background template} = \text{DATA} \]
Spin correlations @ Tevatron

Note: Tevatron tops via qq – scattering!

\[
\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_+ d \cos \theta_-} = 1 + \frac{1 + \kappa \cos \theta_+ \cos \theta_-}{4}
\]

Tevatron no or marginal evidence for spin correlations

\[
f = 0.85 \pm 0.29
\]
Measure $\Delta \phi$ of leptons in transverse plane

Note experimental distortion:
Alignment means on lepton low energetic

Spin correlations @ LHC

28.08.2012
Peter Mättig, Scottish Summer School
Comparison with SM expectation

<table>
<thead>
<tr>
<th>Reconstructed asymmetries</th>
<th>Data</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\Delta \phi}$, inclusive region</td>
<td>-0.158 ± 0.010</td>
<td>-0.171 ± 0.002</td>
</tr>
<tr>
<td>A_{c1c2}, inclusive region</td>
<td>-0.062 ± 0.011</td>
<td>-0.087 ± 0.002</td>
</tr>
<tr>
<td>$A_{\Delta \phi}$, $M_{t\bar{t}} > 450$ GeV/c^2</td>
<td>-0.378 ± 0.019</td>
<td>-0.384 ± 0.003</td>
</tr>
<tr>
<td>A_{c1c2}, $M_{t\bar{t}} > 450$ GeV/c^2</td>
<td>-0.019 ± 0.016</td>
<td>-0.044 ± 0.003</td>
</tr>
</tbody>
</table>

First significant evidence of spin correlations
Agreement with Standard Model

Study of spin correlations:
A method to separate new resonances from QCD continuum (?)
Single top production

top pairs due to strong coupling, weak coupling \Rightarrow single top quarks

Dominant
$\sigma(7 \, \text{TeV}) = 65 \, \text{pb}$

(half of tt - Xsection)

Remember:
W^\pm couples to fermion doublets

\[
\begin{pmatrix}
\nu_e \\
e^-
\end{pmatrix},
\begin{pmatrix}
\nu_\mu \\
\mu^-
\end{pmatrix}, \ldots,
\begin{pmatrix}
t \\
b
\end{pmatrix}
\]
Single top production

Allows detailed studies of the weak coupling of top quarks

- How often does $W \rightarrow tb$ (and not ts, td, or something else?)
 i.e. measuring CKM element $|V_{tb}|$
- Does the top couple completely left handed to the W?
 (as all other fermions do)

Example: $W^+ \rightarrow u\bar{d}$

Spin direction
Momentum

Forbidden in weak interactions

- new particles, additional couplings
Several observables with moderate sensitivity: combine all information likelihood

Peter Mättig, Graduiertenkolleg
Berlin/Dresden 2012
Measurements

CMS:
$$\sigma_{t\text{-}\text{channel}}(7 \text{ TeV}) = 70.2 \pm 12.1 \text{ pb}$$

ATLAS
$$\sigma_{t\text{-}\text{channel}}(7 \text{ TeV}) = 90.2^{+32}_{-22} \text{ pb}$$

Observation of single top production
Precision measurements to follow
Measurements

t-channel single top quark production

- CMS preliminary, 1.14/1.51 fb$^{-1}$
- D0, 5.4 fb$^{-1}$
- CDF, 3.2 fb$^{-1}$

Theory Models

- NLO QCD (5 flavour scheme)
 - Theory uncertainty (scale \oplus PDF)
 - Campbell, Frederix, Maltoni, Tramontano, JHEP 10 (2009) 042

- NLO+NNLL QCD
 - Theory uncertainty (scale \oplus PDF)
 - Kidonakis, Phys.Rev.D 83 (2011) 091503
Measurements

$|V_{tb}| = 1.03^{+0.16}_{-0.19}$

Search for tb resonances

$M_W' > 1.2$ TeV

Anomalous couplings

$B(t\rightarrow ug) < 5.7 \times 10^{-5}$, $B(t\rightarrow cg) < 2.7 \times 10^{-4}$
Conclusion

- Standard Model test a crucial element of LHC program
- Understanding SM processes pre – condition for understanding detector
- Studying SM at highest energies charters new territory and may reveal New Physics
- If New Physics will turn up in 'non- SM signatures', SM processes still must be considered as background

LHC: a first go on Standard Model processes
statistics by the end of the year 6 – 1000x higher
detailed systematic studies required
but: whole new phase space can be addressed