bill.Murray@stfc.ac.uk

St Andrews 25th August 2012

 $\begin{array}{c} \bullet H \rightarrow \gamma \gamma \\ \bullet H \rightarrow WW \\ \bullet H \rightarrow \tau \tau \\ \bullet H \rightarrow bb \end{array}$

Rates by channel at 125GeV

- Data to June 2012From 10s to
- 100000 events per channel
 - Easy!
- But total pp events: 8x10¹⁴
- 20 Higgs to IIII events
- Needs incredible background rejection

Meaning of limit plot

- I should have explained:
- X axis is $m_{H}^{}$, not (m_{III})
- Y axis is µ from Glenn's slide
- $(m_{_{H}},\mu)$ defines a theory
- $(m_{_{H}}, 1)$ is the SM
- If observed line is a 0.7 then an SM-like model with 70% rate or more is excluded @ 95% CL
 - If below 1 SM is ruled out for that m_H
- If outside green/yellow thats interesting too.

 $ZZ \to II\nu\nu$

Fully leptonic, but rate 6xIIII

However mass reconstruction is not possible

- Two missing neutrinos means too much is lost
- 4-vector of the $Z \rightarrow II$, p_{T} of $Z \rightarrow vv$ available

$$m_T^2 \equiv \left[\sqrt{m_Z^2 + |\vec{p}_T^{\ \ell \ell}|^2} + \sqrt{m_Z^2 + |\vec{p}_T^{\ \mathrm{miss}}|^2} \right]^2 - \left[\vec{p}_T^{\ \ell \ell} + \vec{p}_T^{\ \mathrm{miss}} \right]^2$$

- Works best for m_{H} >300
 - Higgs is wide, so mass reconstruction less useful
 Zs are boosted, so Z → vv has measurable p^{miss}
- E^{miss} needed for background rejection and signal

 $ZZ \rightarrow IIvv missing E_{T}$

2011 ATLAS found pileup was hurting

- Left is low pileup (~6)
- Right is ~15
- Signal unchanged, but Z background rises

VBH H to ZZ to llvv

CMS used VBF production to reduce background
 Tag the forward jets...increase s/b 10x
 Gives much cleaner signal...but low rate

 No ATLAS 2012 results
 CMS exclude 275 to 600 using this channel alone

 Pileup can be fought!

ZZ → llqq

- Highest rate for a ZZ process
 - Leptons provide 'easy' trigger
 - Need both Zs on shell so m_H over 200GeV
 - Work going on to bring this to low mass region
- Background reduction
 - Double constraint reduces tt contamination
 - Further reduced by MET veto
 - Z plus jets background dominant
- Use 2/3 subchannels:
 - Z to light quarks
 - CMS use quark v gluon tagging to enhance signal
 - Z to b quarks
- No 2012 results here yet

ZZ → llqq

Most backgrounds from data sidebands

- Eg tt from $m_{\parallel} < m_z 15$ or $m_{\parallel} > m_z + 15$
- Z+jets use $m_{qq} < m_z$ -15 or $m_{qq} > m_z$ +15
- Small EW from simulation

CMS sensitivity 2xSM, ATLAS 3xSM at 350-400
 Fluctuations never up to 2σ

H to WW

R

- Dominant decay mode in m_H>130 GeV
- Ivqq
 - Highest rate final state
 - Only one neutrino allows mass reconstruction
 - But only if both W's on shell
 - Ferocious W+jets background
- IvIv
 - All leptonic mode allows suppression of background
 - Even when one W is off mass shell
 - Good rate
 - Non-resonant WW and tt are major backgrounds
 - •
 - But ultimately it is a counting experiment; delicate

WW → lvqq

- Largest Higgs BR for high mass
- Presence of charged lepton gives QCD rejection
- But, like in tt, semileptonic mode allows mass reconstruction
 - Missing p_{T} and m_{W} are 3 constraints
 - Obtain p_z^{ν} from roots of quadratic
 - Only take real solutions
 - Take lower p_z option
- Suffers from LARGE background from W+jets
 - But smooth background
 - Signal is a bump
 - Analysis is relatively straightforward

Select hadronic W

- CMS tune cuts as a function of m_H
- Boosted jet pair shows signs of W peak
- Cuts select relevant region

WW → lvqq

WW → lvqq

CMS use 2012 data

 ATLAS only 2011

 Exclude 230 to 480

 GeV Higgs using this mode
 No sign of excess

High Mass Higgs status

- Is it really dead?
 - IIII, (IIqq), IIvv, Ivqq and IvIv all exclude it
 - For some mass region
 - For 1 or 2 experiments
- The combination of these is very strong
 - But only for SM like strength
- If we already found 'the' Higgs
 - Then a second must have reduced coupling
 - So searching for a scalar high-mass resonances remains high priority
 - But should we assume SM width?

WW → IvIv

• The most sensitive channel for $130 < m_{H} < 200$

- Still one of the 3 most important at 125GeV
- But poor mass information due to neutrinos
- Good trigger, reasonable rate
 - Largest background is non-resonant WW
 - Also top when looking at WW+1 jet
 - Backgrounds measured from control regions
- Request two leptons
 - 15,25 GeV (ATLAS) 10,20GeV (CMS)
 - ATLAS only uses e-µ pairs in 2012 (ee/µµ have more bkgd.)
- Require missing E_{T} (E_{t}^{rel}) and p_{T} (II) for WW
- Select signal area with $\Delta \phi$ and m₁ selections
 - CMS using cut-based and multivariate
 - ATLAS prefers cut-based.
- Many backgrounds need estimation from data tricky

$H \xrightarrow{} WW^{(*)} \rightarrow I \nu I \nu$

• W^+W^- to $I^+ \upsilon I^- \overline{\upsilon}$ has assorted backgrounds:

Background	Reduced with	Estimated using
D-Y (l+l-) production (inc. ττ → eµ)	Missing E _{Tr} el	ABCD method
WW non-resonant	$d\Phi_{\parallel}, M_{T}$ cuts	Rate in control region
tt and single top	B tag, jet binning	Rate in control region
W+jets	Isolation, IP cuts	Loose lepton fake rate
QCD	Same as above	As above

• M_T

W.Murray PPD 19

$H \to WW \to I \upsilon l \upsilon$

Lepton thresholds

				e-e	μ-μ	e-µ
	pT leading, GeV			25	25	25
	pT subleading, GeV:ATLAS			20	15	e:15, μ:20
	pT sub	leading, Ge	V:CMS	10	10	10
		ETmissrel		40	40	25
M	ET	$E_{\mathrm{T,rel}}^{\mathrm{miss}} = \left\{ {} ight.$	$E_{\mathrm{T}}^{\mathrm{miss}}$ $E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin$	$\mathrm{if}\Delta\phi$ $\Delta\phi$ $\mathrm{if}\Delta\phi$ $\Delta\phi$	$\phi \ge \pi/2$ $\phi < \pi/2$ $\phi = \min(\Delta \phi (E_{\mathrm{T}}^{\mathrm{miss}}))$	$,\ell),\ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},j))$

Spin correlation in H→WW^(*)

- Spin 0 nature of Higgs differentiates from QCD WW
 - WW's spin opposite
 - Therefore decays correlated
- Cut on $\Delta \phi$ to select signal
- Normalise WW background from rejected region

Spin correlation issue

- Background is mostly $qq \rightarrow WW$
 - But $gg \rightarrow WW$ also contributes
 - With different spin structure
 - Enhanced by cuts but only 3%
- Or is it?
 - qq is NLO
 - gg is LO
 - K factor?
- We have no way to measure this

ArXiv: hep-ph/0503094

T. Binoth, M. Ciccolini, N. Kauer, M. Krämer

	$\sigma(pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu')$ [fb]							
	gg	q	$\frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}}$	$\frac{\sigma_{\rm NLO+gg}}{\sigma_{\rm NLO}}$				
		LO	NLO	10	NEO			
σ_{tot}	$53.61(2)^{+14.0}_{-10.8}$	$875.8(1)^{+54.9}_{-67.5}$	$1373(1)^{+71}_{-79}$	1.57	1.04			
σ_{std}	$25.89(1)^{+6.85}_{-5.29}$	$270.5(1)^{+20.0}_{-23.8}$	$491.8(1)^{+27.5}_{-32.7}$	1.82	1.05			
σ_{bkg}	$1.385(1)^{+0.40}_{-0.31}$	$4.583(2)^{+0.42}_{-0.48}$	$4.79(3)^{+0.01}_{-0.13}$	1.05	1.29			

$WW \to I \nu I \nu$

• Missing E_{T}

- Vital tool against Z+jets events
 - costs in signal rate
- Degraded in 2012
- ATLAS dropped ee/µµ to suppress this

· _ FTTTTTTTTTTTTTTTTTTTTTT

Z+jets background

Jet binning

- The top background is dealt with by binning:
 - 0 jets
 - Very small top
 - 1 jet
 - B-veto jet
 - 2 jets
 - Used tag jets for VBF
- Top control: 1-jet with b-tag
 - Same leptons cuts as signal
 - acceptance from data

H→WW^(*) via VBF

VBF Higgs production gives two 'tag' jets

- Reduced rate, but enhanced signal to background
 If the central jet veto is applied
- Requiring these jets gives additional complementary search
- Central Jet veto?
 - Issue here is reliability of efficiency calculation
 - No good estimation of this in data more theoretical reliance
 - CMS did not apply jet veto
 - ATLAS did

WW background extraction

Backgrounds are measured in control regions

- ATLAS same-sign (left) check W+jets
- ATLAS WW control (right) from high m_{τ} events
 - Integrals must match data/MC by contruction.
 - But scale factors are near 1.

WW signal region

Modelling of shapes from simulation

- Tricky business, different codes compared
- Distinct excess in both experiments
 - In the region signal is expected

 $H \rightarrow \gamma \gamma$

Rare decay,

- 2 per mille
- 110<m_H<150

Drove ECAL design

- Resolution in CMS
- Pointing in ATLAS

Mass resolution tested in Z → ee

- Need to know vertex position
 - Pileup hurts!

 Good jet rejection also essential

H to yy event selection

Very simple basic signature: Photon identification based both on lateral and longitudinal segmentation of the Electromagnetic calorimeter Two high-quality isolated high-pT photons

 $p_{T1} > 40 \text{ GeV}; p_{T2} > 30 \text{ GeV}$ $|\eta_{12}| < 1.37 \text{ and } 1.52 < |\eta_{12}|$ <2.37

 $H \rightarrow \gamma \gamma$

- Decay viaa top loop
- But trigger, mass resolution are good
- Large backgrounds of γγ, γ-jet and jet jet
 - Need O(10⁴) jet rejection
 - Both detectors provide this
- Emphasis is on efficiency
- Background prediction have large errors
 - But can be taken from data in bump-hunt

P

Primary Vertex

- Finding energy in a calorimeter does not tell you the photon momentum
 - You need to know the primary vertex position too
- Problem: pileup gives many
- ATLAS uses pointing from calorimeter to identify correct
- CMS photon conversion tracks, vertex p_τ, vertex sum p_τ

1.- Measure photon direction

2.- Deduce z of PV

Calculating H -> yy mass

VV

н

 Electron resolution checked using the Z peak

- Need to transport to photon with MC
- Different e/y response in MC largest systematic uncertainty

H → **yy** mass resolution

H → yy sample makeup

 Both experiments measure sample composition using sidebands of isolation

• Plus $Z \rightarrow ee$ events mistaken for double conversions

- Samples are dominated by real di-photon.
 - But this is not explicitly used in the analysis

$H \rightarrow yy$ analysis method

- In principle look at the $m(\gamma\gamma)$ spectrum for a bump
- But signal/background and resolution depend upon other variables
- Both experiments split into several categories, fit at once
 - ATLAS uses p_{Tt}, barrel/forward,

converted/unconverted

- CMS uses MVA to select categories
- One or two 2-jet categories sensitive to VBF added too
 - Gives more power
 - But also useful to understand physics of production
- But..too many plots to take in
 - 20 in ATLAS' case
 - So experiments weight categories and add them up.

CMS 2012 data

 $H \rightarrow \gamma \gamma$

- Both experiments see significant peaks around 125
 - Weighted sum clearer

ATLAS' channel compatibility

Signal strength

$H \rightarrow yy$ improvements?

- Mass resolution is a key issue
 - Calorimeter calibrations can be improved
 - Potential big gain for CMS
- Use of production mode
 - Gluon fusion dominates
 - 0,1,2 jets improve s/b
 - W,Z,tt associated also improve in future...
 - rates very low
 - But they are useful to understand what we have found

H → Zy

- No experiment shows this
 Old studies found it hard
 But if M_H ~ 140 it could be
- retried
 50x less than ZZ
 - But 15x better B.r., so only 3x down
 - Similar mass resolution
- Zy background worse than ZZ
- Spin structure helps.
 - Spin zero H and massless y so Z is transverse polarised

Production mode

- gg fusion highest rate
- Jet associated mixes gg, VH and VBF
- VBF best s/b
- Decay II, Ih or hh
- Trigger:
 - One/both tau decay gives trigger lepton
 - Or hadronic tau triggers for hh mode
- Mass of H done many ways:
 - collinear approximation
 - Visible mass
 - 'Missing Mass Calculator'
- $Z \rightarrow \tau \tau$ main background

Jet

$H \rightarrow \tau^+ \tau^-$ mass

- 'Collinear approximation'; i.e. leptons follow tau direction
 - Impose p_{T} balance on system
 - Gives 2 constraints $\Sigma p_x=0$, $\Sigma p_y=0$
 - Solve for 2 unknowns: the $p_{\scriptscriptstyle T}$ of the two taus
 - NB This does not work if the taus are collinear; 'system need some p_{τ} in the Higgs
- Visible mass: Sum observed
- Missing mass calculator
 - Multi-dim maximisation of probability of observed system given m_H

Analysis structure

- 0 jet, boosted and VBF
 - VBF: 2 jet p₁>30 & BDT selector > 0.5
 - Boosted: Fails above, 1 jet $p_{T}>30$
 - 0 jet: Rest
- S/b improving dramatically. 0 jet constrains syst.
 - But signal rate low in VBF

$VBF: qq \rightarrow qqH \rightarrow \tau\tau$

- Two forward jets, P_T of order $M_w/2$
- Higgs products central
 No colourflow → suppressed central jets

$H \to \tau \tau$

- CMS use many modes
 Including VBF search and 2012 data
 - With a beautiful picture
 - μ-τ candidate
 - Two forward jets
 - Mass 580GeV
 - Little central activity
 - Looks just as advertised

e-μ, μ-μ, μ-τ, e-τ channels studied

$Z \rightarrow \tau^+ \tau^-$ background

- Z to tau tau
- Hard to model MET
 - Found using real Z to $\mu\mu^{e}$
 - Remove µ, convert into a tau, use as input to simulation
 - Replace simulated tau into original event
- Used by both experiments

- **ττ** → had/had in ATLAS 2011 results Events / 10 GeV
- 20/29 GeV diobject trigger
- Only 1-jet category defined • Ih in 4
 - Expect improvement
- QCD from data
- Z background from embedding

$CMS \ VBF \ H \to \tau\tau$

- Best fermion decay mode
- Using many combinations:
 - eth, μth, eμ, μμ decays
 - 0jet/1jet * high/low p_T, +
 VBF

$CMS \ H \rightarrow \tau\tau \ results$

- ATLAS have 2011 result only
- CMS combined tau result has no excess
- Sets limit 1.1xSM Higgs

 $H \rightarrow b\overline{b}$

- Dominant decay mode for m_H<130GeV
 - Gluon fusion is buried under background
 - VBF might be accessible
 - Trigger is hard.
 - Suggestion of photon associated?
 ??
 - WH/ZH are best modes at Tevatron
 - Inclusive & boosted approaches at LHC
 - ttH is tough many jets
 - Too much QCD radiation
 - Rate suppressed at 7/8TeV w.r.t. 14TeV

VH → bb

Vbb has big backgrounds

- Signal has harder p_{τ} spectrum than most
 - This was suggested in context of boosted analyses
 Not used (yet) but s/b at high p_T is exploited

• Three modes used, with sub-bins of p_{τ}

- vvbb :
 - p_T >120GeV to trigger events
- lvbb :
 - p_T>120GeV to reduce t → Wb contribution
- IIbb:
 - ${\ensuremath{\,\circ\,}} p_{_T}$ bins to exploit difference

• Fitting in multiple bins constrains e.g. Wbb p_{T}

CMS Preliminary

 $\sqrt{s} = 8$ TeV, L = 5.1 fb⁻¹

W(uv)H(bb)

10

0.6

WH → lvbb

Select events with Z or W boson in the leptonic final state (used also to trigger the event), and with exactly two jets b-tagged with p.>25 GeV

Backgrounds:

W+jets, Z+b-jets, top, QCD jets

CMS $H \rightarrow bb$ mass resolution

- Optimisation of B jet energy scale a la CDF
 - secondary vertex position
 - 4-vector
 - Charged pt fraction
 - Jet shape
- Get 15% better resolution
 - 15% reduced background
 - Like 30% more luminosity

VH mass distribution

 This CMS plot combines all energies/channels in m_{bb} for display purposes
 The analysis is BDT based

CMS much more sensitive 8TeV

Mass resolution improved
Not much signal here!

CMS sensitivity comparable to Tevatron
 CDF: expected limit 1.39xSM at 125GeV
 CMS: expected limit 1.64xSM at 125GeV

on ơ/ơ_{sM}

35% CL limit

Most channels favour a signal
 More powerful ones (WW,ZZ,γγ) all do.

Discuss combination/interpretation on Monday

Conclusion

- Tevatron still interesting, especially for m_{μ} ~115
 - But would 2σ exclusion of SM satisfy?
- A conclusive discovery requires LHC
- At least 2σ across 115-500 available in 2011
- Where we have got to I address tomorrow