bill.Murray@stfc.ac.uk

St Andrews 24th September 2012

Luminosity
 LEP/TeVatron results
 H → ZZ → IIII

Caveats

P

For LHC I will often only show ATLAS

- CMS is broadly similar
- But I know ATLAS better
- Don't trust the numbers!
 - What is important is that you understand the principle rather than getting the right answer
 - If you want to check Higgs discovery, look at the papers

Who am I?

- I work at Rutherford Appleton Laboratory
 - Permanent since 1993
 - A post I got saying I wanted to look for the Higgs
- I worked on the LEP Higgs search
 - I am still DELPHI Higgs convenor!
- I have spent some time looking at a muon collider as a Higgs factory
- I was Higgs convenor of ATLAS up to end 2011

Co-ordinates

pp (pp) collisions are between partons
 Proton remnants carry p₇ down beampipe

Therefore z component of momentum is of reduced interest

• Tracker quotes p_{T} , calorimeter E_{T}

- y differences invariant under boost
 In massless aprox. y = η
- Jet finding/isolation is done using dR distances: $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$
- This has drawbacks for massive objects
 - $\Delta y = \Delta \eta$ breaks down
 - Physical size of jets shrinks as η grows
- There is no perfect solution
 - So continuous development

Some Colliders

	LEP	LC	TeVatron	LHC	
Collisions	e⁺e⁻	e⁺e⁻	pp	рр	
Years	1989-2000	2020??	1987-2011	2010-2012	2015-2022
Max E, GeV	208	?1000?	2000	7000/8000	13000/14000
Integrated lumi.	0.5fb ⁻¹	Large	10fb ⁻¹	30fb ⁻¹	300fb ⁻¹
Higgs (125GeV)	1	100K+	10000	300000	10M
Higgs reach	0-115	0-800+	Hard	100-1000	100-1000

Luminosity

• Define:
$$R = l \sigma$$

- Interation rate is luminosity times cross-section
- For a circular machine

$$l = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_y}$$

 σ_v

 σ_x

- $f=n_b c/2\pi r$ is interaction rate,
- n the number of particles / bunch
- $-\sigma$ the beam size

Emittance

 σ'_{x}

 $\sigma_{\rm v}$

- Envelope of beam particles
 units m x Rad
- $\varepsilon_x = \pi \sigma_x \sigma'_x$:
 - Assumes uncorrelated
- Higher dimensional emittance
 - The 6-dimensional particle correlation x,y,z,x', y', z'
 - ϵ a conserved quantity (Liouville's theorem):
 - Reduce one σ , other grows
 - $\boldsymbol{\epsilon}_{_{T}}$ is almost a conserved quantity is what LHC quotes
 - LHC has round beams: $\varepsilon_x = \varepsilon_v$
- Normalised emittance: $\epsilon_N \equiv \overline{\beta \gamma} \epsilon$
 - This is invariant under acceleration
 - It is so useful, it is often called emittance.

 $1/\epsilon$ = brightness

Emittance examples

All these have zero emittance

More Emittance examples

- Finite emittance
- Initially x' small
- Lense correlates x,x'
- Drift to focus makes x small.
- Area is conserved

Luminosity and Emittance

- Define β^* as σ_x / σ'_x ,
- This is the strength of the focusing magnets
 - 'Low Beta quads'

$$l = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_y}$$

$$l = f \frac{n_1 n_2}{4 \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Beam Emittance

- e⁺e⁻ rings set by synchrotron radiation
 - Electron machines `have no memory'
- pp machines limited by beam preparation
 - Stochastic cooling
 - emittance growth is cumulative
 - Beam-beam effects increase LHC emittance during fill
 - Actually LHC has some KeV synchrotron radiation
- For linear accelerators preparation and beam blowup contribute.

$$l = f \frac{n_1 n_2}{4 \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

- Increase f
 - Bunch separation, power constraints
- Increase n_i
 - Space charge, power, particle availability, pileup
 - But quadratic gain in rate...
- Decrease β*
 - Strong Quads inside detectors apparatus, blowup, beam aperture limitations, bunch length
- Decrease ε
 - 'colder beams' improve performance
 - But too small and beam-beam interaction destructive

Other Luminosity limits

- Beam beam interaction:
 - Each beam feels field of the other: Disruptive if beams very small (linear v circular collider)
- Accelerating power
 - Available watts of RF power limit currents not LHC
- cooling power
 - Limit may be keeping accelerator cold
- Electron cloud
 - Positive beam can pull electrons off wall
 - They can amplify when they collide with wall
 - LHC needs scrubbing to reduce this
- pile-up
 - LHC designed for 25 collisions per bunch crossing
 much more will swamp detectors

- Sample LHC 2011 parameters:
 - 1.35x10¹¹p/bunch
 - 2x10⁻⁶ normalised transverse emittance
 - 1320 colliding bunches, 27km circumference
 - β* 1.5m
- Peak Instantaneous luminosity 2.4 10³³cm⁻²s⁻¹
 - Use 10⁷ seconds in a year (4 months working)
 - 2.4 10⁴⁰cm²/year
 - $1b = 10^{-28}m^2$
 - 24fb⁻¹ per year
 - Drop ~ factor 5-10 for filling, breakage, average-to-peak

http://lpc.web.cern.ch/lpc/lumi.html

The Standard Model Higgs

Production via Higgstrahlung

- W boson fusion kinematically suppressed (<10%)
- But included in cross-section calculations
- Established first extensive Higgs limits
- Either initial or final Z boson is off mass-shell
- Z boson decays characterise state

Search at LEP I - E_{CMS}=91GeV

- •Great effort which I have no time to describe
- •Many modes:
 - Stable,γγ,ee,μμ,ππ,ττ,bb
- •Clean Z decays (II, vv) used
- •Prior to LEP only some patchy constraints
- The mass range from **0** to ~65 excluded, no holes.

LEP 2: 200+ GeV

- Energy raised in steps from m_7 to 208 GeV
- Around 0.5fb⁻¹ of data
- Sensitive to $Z^* \rightarrow ZH$
- Therefore approximate reach:

 $E_{COM} - m_z - 2$

- Or 115GeV/c² at 208.
- In final year energy was raised to 206 then 208.

The best candidate, ALEPH

Sum of four experiments:

Distribution of the reconstructed Higgs boson mass with a Higgs boson of mass 115 GeV/c²

Yellow is background Red is Higgs, if it weighs 115GeV

Higgs then: LEP SM Higgs

Final LEP result:

M_H>114.4GeV (95%CL)

Excess at 115GeV would happen in 9% cases without signal

TeVatron Higgs production

- Cross-sections of order pb 10fb⁻¹ data gives thousands But the background are
 - large

The Higgs problem

- Rates are low
 - So luminosities must be large
- One event in 10¹⁰ is signal
 - 10,000 events is tiny

Tevatron analyses Channels

- $\bullet \hspace{0.1in} H \rightarrow WW$
 - WW \rightarrow IvIv: Most sensitive
- H → bb
 - WH, ZH, ttH useful but hard
- $H \rightarrow \gamma \gamma$
 - Rare, helps for low mass
- H → ττ
 - Hard, low mass,rare
- H → ZZ
 - ZZ → IIII: Cleanest mode but low rate

Tevatron dataset, 12fb⁻¹

Tevatron Major channels

Approximate ranges for channels

R

SM Higgs: WH→lvbb

• Signature: high p_{T} lepton, MET and b jets

- Backgrounds: W+bb, W+qq, top/tt, Non W(QCD)
- Key issue: estimating W+bb background
 - Shape from MC, normalization from data

Z

SM Higgs: ZH/WH→MET+bb

Signature: MET and b jets

- Backgrounds: Z+bb, Z+qq, top, QCD
- Key issues: estimating W+bb background
 - Shape from MC, normalization from data

SM Higgs: H→WW

• $H \rightarrow WW \rightarrow IvIv$ - signature: Two high p_T leptons and MET

- Primary backgrounds: WW and top in di-lepton decay
- CDF and D0 both using NN on many kinematic quantities

0000

00000

Many independent channels (n_{jets}, lepton quality)

Tevatron Higgs Combination

The LHC situation

- The 7/8TeV pp energy raises the Higgs cross section
 - Factor 10 c/f 2TeV Tevatron
- Designed for 10³⁴ luminosity
 - 7 10³³ achieved
 - c/f 4 10³² at Tevatron

Decades of preparation continue

- 0.05fb⁻¹ delivered 2010
- 5fb⁻¹ in 2011
- 12fb¹ in 2012 so far

Data taking in 2012

Peak Luminosity almost stable
Improvements slow now

- Recording efficiency
 93%
 - Less than 10% bad data by subdetector

Pileup

Serious at LHC Fairly stable so far But double 2011 • 20 interactions per event • 50ns bunch trains So pileup also from previous and subsequent interactions Affects calorimeters more than trackers Simulation difficult as rates must be measured Need to reweight spectra

This 2011 event is pretty typical for 2012

Run Number: 189280, Event Number: 1705325 Date: 2011-09-14 02:47:14 CEST

Higgs production

- Backgrounds to WW, $\gamma\gamma$ are $q\overline{q}$ annihilation
 - pp collider supresses these c/f pp
 - Effect is small at 7TeV

Reminder: Gain from E

LHC analyses Channels

- $H \rightarrow ZZ$
 - $ZZ \rightarrow IIII$: Golden mode
 - $ZZ \rightarrow IIvv$: Good High mass
 - $ZZ \rightarrow IIbb$: Also high-mass
- $H \rightarrow WW$
 - WW → lvlv: Most sensitive
- $H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- H → ττ
 - Good s/b, low mass,rare
- H→bb
 - ttH, WH, ZH useful but hard

SM Higgs modes used

 Higgs decays to **Bosons** Coupling structure favours it Kinematics forces quark decays below 140GeV

mH, GeV	WW → IvIv	ZZ→4I	ŶŶ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04

10°

10⁸

 10^{7}

10⁶

10⁵

 10^{3}

 10^{2}

 10^{4}

10⁰

10⁻¹

10⁻²

10-3

10⁻⁴

10-5

10.6

 10^{-7}

vents/sec

Rates?

proton - (anti)proton cross sections

√s

(TeV)

How we search for the thing

- If Higgs boson had been heavy (>140GeV/c²)
 - Serious decays to WW, ZZ
 - These have clear leptonic decay modes
 - $ZZ \rightarrow 4I$ is frankly nicer, but WW $\rightarrow IvIv$ more common
 - The discovery is fairly straightforward.
- If Higgs boson is light (<140GeV/c²)
 - (and it is)
 - WW/ZZ still important, but rarer
 - Use H → γγ
 - Or VBF $H \rightarrow \tau\tau$ can trigger leptons
 - $H \rightarrow bb$ is dominant mode can we find it?
 - Not without something to make it stand out
 - Z/W+H, ttH

 $H \rightarrow ZZ \rightarrow |+|-|+|^{-}$

- Golden channel m_H>190GeV/c²
 - Above ~200 two real Z's
 - Down by 125 ZZ*, 1 or even both off shell
- Good mass resolution, trigger
- Require 4 leptons
 - Isolated, prompt
 - One pair 50-106 GeV
 - The other variable
- Backgrounds:
 - Irreducible QCD ZZ to IIII dominates
 - Reducible Zbb, tt especially for low masses

Trigger efficiencies (ATLAS)

- Crucial to a hadron collider – the trigger
 - Most channels use single lepton ~20GeV p_T
- 3 level trigger system
 - L1: 2µs, local objects
 - L2: 'ROI' complete information
 - EF: full reconstruction
- Efficiency plateau
 - 80% µ efficiency
 - Multi-leptons give good total
 - ~98% electron efficiency
- Ultimately 99% efficient

Muon reconstruction (ATLAS)

- Combined muons (top)
- Combined + segment tagged (bottom)
- Final efficiency good
- Difficulties:
 - η=0 (no muon chambers)
 - η=1.2 (barrel/forward transition)
- In 2012 use 'stand alone' to improve to 2.7

R

Isolation effects

- Reducible background involves e/µ from b/c quarks
- Is there a jet here?
 - Define cone around lepton, size ΔR
 - Sum energy in cone
 - Require E_{cone}/E_{lept}<X
 - Need to optimise selection
 - Measure efficiency
 - And Background

Impact parameters

- Suppression of b quarks with impact parameters
 - Lepton closest approach to proton collision
 - $H \rightarrow ZZ \rightarrow IIII$ have no decay length
 - lepton from b quarks have ~100µm impact
- Plotted is larger
 SIP for I3, I4

$H \rightarrow ZZ \rightarrow |+|-|+|^-$

- Estimation of background
- For ZZ:
 - Shape from MC (gg,qq)
 - Rate fitted to data with theory constraint
- For non Z+jets, tt:
 - Relax isolation cuts
 More background
 - tt fitted to m₁₂
 - Z+jets fitted to m₃₄
 - Extrapolate to signal region

Lepton thresholds

- We wish to explore towards m_{H} =115GeV
- M_z=91, so little energy for Z*
- Therefore important to use leptons of low $\boldsymbol{p}_{\scriptscriptstyle T}$
 - 7GeV threshold used
 - (5GeV for muons in CMS)
- Need to understand eff, background
 - Tag and probe used normally
 - W, Z must be extended with $J/\psi \rightarrow \ell \ell$
- Backgrounds get more accute at low p_{T} .

Lepton p_{T} distribution

- m_H<<2m_z
 The decay involves one Z being far from mass-shell
- The softest lepton is typically below 10GeV p_T
- Need to push lepton momentum range

Lepton isolation/impact pars

 Nothing in MC is trusted
 The efficiency of the isolation and impact parameter cuts is checked with data

Science & Technology Facilities Council

Rutherford Appleton Laboratory

- The Z → µµ peak allows efficiency measurement
 - But few Z produce leptons of only 7 GeV

Selection methods

	ATLAS	CMS	
Minimum lepton p_{τ}	7Gev (e) / 6 GeV (µ)	7Gev (e) / 5 GeV (µ)	
Mass Z ₁	50 - 106	40 - 120	
Mass, Z ₂	17.5 - 115	12 - 120	

• CMS cuts always a little looser, more efficient

- ATLAS efficiency: 36%,21%,18% in µµµµ,eeµµ,eeee
- CMS efficiency 40%,27%,18% in µµµµ,eeµµ,eeee
- 10% higher efficiency in CMS
- Backgrounds similar despite different cuts:
 - ATLAS background expected (120-130): 4.9
 - CMS background (121.5 -130.5): 3.8
 - 10% less background in CMS per GeV
- CMS also uses 'matrix element'
 - Uses leptons angles & Z masses to separate sig. from back.

Mass resolution

- A function of m_H, detector performance, lepton type etc
 Of order 2GeV for mass below 200
- Dominated by natural width above

Run: 182796 Event: 74566644 2011-05-30 07:54:29 CEST

Event rates 120-130GeV

	Signal	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	Observed
4μ	2.09 ± 0.30	1.12 ± 0.05	0.13 ± 0.04	6
2e2µ/2µ2e	2.29 ± 0.33	0.80 ± 0.05	1.27 ± 0.19	5
4e	0.90 ± 0.14	0.44 ± 0.04	1.09 ± 0.20	2

Five signal expected in ZZ channel now
 Twice the non-resonant ZZ background

Non-ZZ Background small c/f sigal

- 120% in eeee
- 6% in µµµµ
- The Z+ee is much dirtier than Z+µµ
- There is an excess, all channels

Candidate masses: m₁ v m₂

• CMS plot showed few events with m₇₁ >90 GeV

- Had sparked theoretical papers!
- ATLAS version is reassuring

CMS 'MELA'

- Matrix element likelihood analysis
 Uses 5 angles and 2 Z masses of the H→ZZ→IIII system
- Background modelled as ZZ*/Zγ*
- Several events are 125 GeV are seen to have very high 'MELA' values, K_D

Interpreting the distribution

- Need a model of background
 - CMS use analytic functions for background
 - ATLAS use MC distributions
- Use s,b densities to define In LR for each candidate
 - Sum these
 - Compare with expectation

Statistical interpretation

- Non-trivial business, with Frequentist and Bayesian methodologies
- For now ATLAS+CMS quote 'CLs' results
 - Derived as a compromise, acceptable to both schools
 - Glen must have discussed this
- A useful approximation for low rate counting experiments with negligible systematic errors:

$$\langle Z_W \rangle = \sqrt{\left(2\left((s+b)\ln\left(1+s/b\right)-s\right)\right)}$$

- This is much better than s/√b in the case of low numbers
 - Can be used to optimise analyses

Expected limits

95% CL limit on σ/σ_{SM} **Expected upper limit** Observed CL_s ATLAS Observed generally Expected CL $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $\pm 1\sigma$ √s=7 TeV:∫Ldt =4.8 fb⁻¹ $\pm 2 \sigma$ follows √s=8 TeV: ∫Ldt =5.8 fb⁻¹ 10 Except at 125GeV 1 10₁ $\sigma \times BR \ [pb]$ HC HIGGS XS WG 201 SM $\sqrt{s} = 7 TeV$ WW $\rightarrow f^{\dagger}vq\overline{q}$ 10° WW $\rightarrow l^{+}\nu \bar{\nu}$ **í**110 200 300 500 400 600 10^{-1} m_H [GeV] $ZZ \rightarrow l^{\dagger}l$ ad Shape reflects the H to IIII 10⁻² $ZZ \rightarrow f^{\dagger}VV$ expected event rate $77 \rightarrow 1^{+1}$ 10⁻³ $I = e, \mu$ $v = v_e, v_\mu, v_\tau$ VBF H $\rightarrow \tau^+ \tau^-$ → [†]vbb $\gamma\gamma$ q = udscb $\rightarrow l^{\dagger}l^{\dagger}b\overline{b}$ 10⁻⁴ 200 300 400 500 M_H [GeV]

Observed limits

- Both ATLAS and CMS exclude most of 130-500GeV
 - Small expected hole at 170GeV
 - Excess neat 125GeV

Observed limits

- CMS sensitivity improved by 'MELA'
- Each has one p-value below 1 in 1000
- Both peaks at the same place

Conclusion

- Tevatron still interesting • Vbb excess of $\sim 3\sigma$ for m_H ~ 125
- ZZ to IIII discussed in some detail
- Other channels I discuss tomorrow
- Combination and interpretation next week