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Outline 

Lecture 1:  Introduction and basic formalism 
 Probability, statistical tests, parameter estimation. 

Lecture 2:  Discovery and Limits 
 Quantifying discovery significance and sensitivity 
 Frequentist and Bayesian intervals/limits 

Lecture 3:  Further topics 

 The Look-Elsewhere Effect 
 Unfolding (deconvolution) 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	


The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of  -2ln L in 
the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of  -2ln L in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 
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Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 
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Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 
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Why 5 sigma (cont.)? 
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Formulation of the unfolding problem 

New goal:  construct  
estimators for the µj (or pj). 

“true” histogram 

Consider a random variable y, goal is to determine pdf f(y). 

If parameterization f(y;θ) known, find e.g. ML estimators    . 

If no parameterization available, construct histogram:   

 !̂
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Migration 

discretize:  data are 

response 
matrix 

Effect of measurement errors:  y = true value, x = observed value, 

 migration of entries between bins, 

 f(y) is ‘smeared out’, peaks broadened. 

Note µ, ν are constants; n subject to statistical fluctuations. 
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Efficiency, background 

efficiency 

Sometimes an observed event is due to a background process: 

Sometimes an event goes undetected: 

βi = expected number of background events in observed histogram. 

For now, assume the βi are known.  
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The basic ingredients 

“true” “observed” 
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Summary of ingredients 
‘true’ histogram: 

probabilities: 

expectation values for observed histogram: 

observed histogram: 

response matrix: 

efficiencies: 

expected background: 

These are related by: 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 18 

Maximum likelihood (ML) estimator 
from inverting the response matrix 

Assume  can be inverted: 

Suppose data are independent Poisson: 

So the log-likelihood is 

ML estimator is  
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Example with ML solution 

Catastrophic 
failure??? 
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What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have ν, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.
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ML solution revisited 

For Poisson data the ML estimators are unbiased: 

Their covariance is: 

(Recall these statistical errors were huge for the example shown.) 
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ML solution revisited (2) 
The information inequality gives for unbiased estimators the  
minimum (co)variance bound: 

invert → 

This is the same as the actual variance!  I.e. ML solution gives 
smallest variance among all unbiased estimators, even though 
this variance was huge. 

In unfolding one must accept some bias in exchange for a 
(hopefully large) reduction in variance. 
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Correction factor method 

Nonzero bias unless MC = Nature.  

Often Ci ~ O(1) so statistical errors far smaller than for ML. 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 24 

Reality check on the statistical errors 

Suppose for some bin i we have:  

Example from Bob Cousins 

But according to the estimate, only 10 of the 100 events 
found in the bin belong there; the rest spilled in from outside. 

How can we have a 10% measurement if it is based on only 10 
events that really carry information about the desired parameter? 

(10% stat. 
error) 
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Discussion of correction factor method 

As with all unfolding methods, we get a reduction in statistical 
error in exchange for a bias; here the bias is difficult to quantify 
(difficult also for many other unfolding methods). 

The bias should be small if the bin width is substantially larger  
than the resolution, so that there is not much bin migration. 

So if other uncertainties dominate in an analysis, correction factors 
may provide a quick and simple solution (a “first-look”). 

Still the method has important flaws and it would be best to 
avoid it. 
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Regularized unfolding 
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Regularized unfolding (2) 
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Tikhonov regularization 

Solution using Singular Value Decomposition (SVD). 
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SVD implementation of Tikhonov unfolding 
A.  Hoecker, V. Kartvelishvili, NIM A372 (1996) 469; 
(TSVDUnfold in ROOT). 

Minimizes  

Numerical implementation using Singular Value Decomposition. 

Recommendations for setting regularization parameter τ: 

 Transform variables so errors ~ Gauss(0,1); 
 number of transformed values significantly different  
 from zero gives prescription for τ; 
 or base choice of τ on unfolding of test distributions. 
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SVD example 
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Regularization function based on entropy 

Can have Bayesian motivation: 
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Example of entropy-based unfolding 
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Estimating bias and variance 

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 



G. Cowan  St. Andrews 2012 / Statistics for HEP / Lecture 3 36 

Some examples with Tikhonov regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with entropy regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Estimating systematic uncertainty 
We know that unfolding introduces a bias, but quantifying this 
(including correlations) can be difficult. 

Suppose a model predicts a spectrum 

A priori suppose e.g. θ ≈ 8 ± 2.  More precisely, assign prior π(θ). 
Propagate this into a systematic covariance for the unfolded 
spectrum: 

Often in practice, one doesn’t have π(θ) but rather a few models 
that differ in spectrum.  Not obvious how to convert this into 
a meaningful covariance for the unfolded distribution. 

(Typically large 
positive correlations.) 
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Stat. and sys. errors of unfolded solution 
In general the statistical covariance matrix of the unfolded  
estimators is not diagonal; need to report full 

But unfolding necessarily introduces biases as well, corresponding 
to a systematic uncertainty (also correlated between bins). 

 This is more difficult to estimate.  Suppose, nevertheless, 
 we manage to report both Ustat and Usys. 

To test a new theory depending on parameters θ, use e.g. 

Mixes frequentist and Bayesian elements; interpretation of result 
can be problematic, especially if Usys itself has large uncertainty.   
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Folding 
Suppose a theory predicts f(y) → µ (may depend on parameters θ). 

Given the response matrix R and expected background β, this  
predicts the expected numbers of observed events:  

From this we can get the likelihood, e.g., for Poisson data, 

And using this we can fit parameters and/or test, e.g., using 
the likelihood ratio statistic 
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Versus unfolding 
If we have an unfolded spectrum and full statistical and 
systematic covariance matrices, to compare this to a model µ 
compute likelihood 

where 

Complications because one needs estimate of systematic bias Usys. 

If we find a gain in sensitivity from the test using the unfolded 
distribution, e.g., through a decrease in statistical errors, then we  
are exploiting information inserted via the regularization (e.g.,  
imposed smoothness). 
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ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of θ should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Crucial point is to use full covariance, not just diagonal errors. 
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Summary/discussion 
Unfolding can be a minefield and is not necessary if goal is to  
compare measured distribution with a model prediction. 

Even comparison of uncorrected distribution with future theories  
not a problem, as long as it is reported together with the expected  
background and response matrix. 

 In practice complications because these ingredients have 
 uncertainties, and they must be reported as well.  

Unfolding useful for getting an actual estimate of the distribution 
we think we’ve measured; can e.g. compare ATLAS/CMS. 

Model test using unfolded distribution should take account of  
the (correlated) bias introduced by the unfolding procedure. 
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Summary of Lecture 3 
Look-Elsewhere Effect 

 Need to give probability to see a signal as big as the one 
 you saw (or bigger) anywhere you looked.  Hard to define 
 precisely; approximate correction should be adequate. 

Why 5 sigma?  If LEE taken in to account, one is usually convinced 
the effect is not a fluctuation much earlier (at 3 sigma?) 

Unfolding 
 Produces an estimate of a distribution that corresponds  
 directly to how it should be for ideal detector. 
 Introduces regularization bias, which is difficult to quantify. 
 Can report unregularized result (no bias but large variance), 
 or the “raw” data; fold model prediction to compare. 
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Extra slides 
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Edge effects 
Regularized unfolding can lead to “edge effects”.   E.g. in 
Tikhonov regularization with Gaussian data, solution can  go 
negative: 

Solution pushed 
negative. 

Important e.g. if New Physics would appear as a longer tail of 
a distribution. 
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Iterative unfolding (“Bayesian”) 

Goal is to estimate probabilities: 

For initial guess take e.g. 

Initial estimators for µ are  

Update according to the rule 

uses Bayes’ theorem here 

Continue until solution stable  
using e.g. χ2 test with previous 
iteration. 

;  see also arXiv:1010.0632.  


