SEARCH FOR A HEAVY TOP PARTNER IN FINAL STATES WITH TWO LEPTONS Federico Meloni (federico.meloni@cern.ch) Università degli Studi di Milano & INFN

Background estimation

Processes with fake or not isolated leptons

- Small, includes double fakes (QCD) and fake-real lepton pairs (W+jets)
- Data-driven estimate using a *matrix method* (see below)

Top pair and Z+jets

- Dominant backgrounds
- Normalization from data in appropriate control regions (CR)
- MC used to relate the CR measurement to the signal region (SR) expectation

Diboson, Wt, ttW, ttZ

• Estimated from MC

Estimation		<i>tī</i> CR	tī CR
all selection < 100 GeV	Process	DF	SF
	tī	68 ± 11	39 ± 1
	$t\bar{t}W + t\bar{t}Z$	0.37 ± 0.07	0.20 ± 0
	Wt	2.7 ± 1.0	1.8 ± 0
between	Z/γ^* +jets	-	3.5 ± 1
ected rates op purity	Fake leptons	0.4 ± 0.3	0.5 ± 1
	Diboson	0.49 ± 0.14	0.10 ± 0
	Total non- $t\bar{t}$	4.0 ± 1.5	6.1 ± 3
	Total expected	72 ± 11	45 ± 1
ctor is	Data	79	53

Z+jets Background Estimation

- Define a **CR** with all selection cuts but **71** < *m*_{II} < **111 GeV** • The transfer factor is computed before the b-tagging requirement to improve MC statistics • The transfer factor doesn't depend on b-tagging

Fake lepton background

 N_{TT} NTL NLT Nii

The two channels are normalized independently

	SF	DF
Z/γ^{\star} +jets	1.2 ± 0.5	-
$(Z/\gamma^{\star}+jets scale factor)$	(1.27)	-
tī	0.23 ± 0.23	0.4 ± 0.3
$(t\bar{t} \text{ scale factor})$	(1.21)	(1.10)
$t\bar{t}W + t\bar{t}Z$	0.11 ± 0.07	0.19 ± 0.1
WW	$0.01^{+0.02}_{-0.01}$	0.19 ± 0.1
WZ + ZZ	0.05 ± 0.05	0.03 ± 0.0
Wt	$0.00^{+0.17}_{-0.00}$	$0.10^{+0.18}_{-0.10}$
Fake leptons	$0.00^{+0.14}_{-0.00}$	$0.00^{+0.09}_{-0.00}$
Total SM	1.6 ± 0.6	0.9 ± 0.6
Signal, $m(\tilde{t}_1) = 300 \text{ GeV}, m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	2.15	3.73
Signal, $m(T) = 450$ GeV, $m(A_0) = 100$ GeV	3.10	5.78
Observed	1	2
95% CL limit on σ_{vis}^{obs} [fb]	0.86	1.08
95% CL limit on σ_{vis}^{exp} [fb]	0.89	0.79

control samples:

- 1 baseline lepton, 1 jet, $\Delta \phi$ (lep-p_T^{miss}) < 0.5, E_T^{miss} < 25 GeV A baseline *not tight* same sign DF pair, no jets, E_{τ}^{miss} < 25 GeV as a function of lepton η and p_{T} , ΣE_{T} , $\Delta R(lj)_{min}$
- The probability **r** of a real lepton to pass *tight* is measured in Z events with a tag and probe technique.

Conclusions

We set 95% CL limits using the CLs method. limits for any given model.

Data are found to be in agreement with the SM expectations.

- Limits on a *spin ½ top partner* are significantly extended: for m(A)<100 GeV, m(T)<483 GeV are excluded (expected: 518 GeV).
- Limits on a *scalar top* decaying into a top quark and $\tilde{\chi}_1^{\circ}$ are set: for massless $\tilde{\chi}_1^{\circ}$ the observed exclusion is 298 - 304 GeV (expected 258 – 374 GeV)

Università degli Studi DI MILANO

 $N(SR) = (N^{\text{Data}}(CR) - N_{\text{others}}(CR)) \frac{N^{\text{MC}}(SR)}{N^{\text{MC}}(CR)}$

<i>r</i> ₁ <i>r</i> ₂	$r_1 f_2$	$f_1 r_2$	$f_1 f_2$	$\left[N_{RR} \right]$
$r_1(1 - r_2)$	$r_1(1 - t_2)$	$f_1(1 - r_2)$	$f_1(1 - f_2)$	
$(1 - r_1)r_2$	$(1 - r_1)r_2$ $(1 - r_1)(1 - r_2)$	$(1 - f_1)r_2$ $(1 - f_1)(1 - r_2)$	$(1 - f_1)f_2$ $(1 - f_1)(1 - f_2)$	
(1)(1 (2)	(1 '1)(1 '2)	(1 1)(1 2)	(1 1)(1 1 2)	

T = *tight* is the **standard** electron and muon selection L = baseline electrons or muons with relaxed identification cuts The probability **f** of a fake lepton to pass *tight* is measured in two QCD

- **Limits on \sigma \mathbf{x} \mathbf{A} \mathbf{x} \mathbf{\varepsilon}** are provided in the results table.
- These are model independent: a theoretician can validate his/her detector response modeling against acceptance and compare signal yields with those $T\overline{T}$ production, $T \rightarrow A_{o}t$

