# Floating Point Issues in Data Analysis

Lorenzo Moneta CERN, PH-SFT



CERN/Intel workshop on Numerical Computing September 25-26, 2012, CERN

### Outline

- Introduction
- ROOT Mathematical libraries
- Numerical Errors in Fitting and Minimization
  - numerical derivative error
  - summation error
- Error in Matrix computation (inversion)
- Summary

## Introduction

- If  $\beta = 2$ , t = 3,  $e_{\min} = -1$ , and  $e_{\max} = 3$ : Floating Points •  $fl(x) = x(1 + \varepsilon)$ 0 0.5 1.0 2.0 3.0 4.0 5.0 7.0 6.0 • fl(x op y) = (x op y) (1+  $\epsilon$ ) op = +,-,/,\*  $\epsilon \le u = \frac{1}{2}\beta^{1-t}$ • single precision (32 bits),  $u = 2^{-24} \approx 6 \times 10^{-8}$ **IEEE 754** • double precision (64 bits):  $u = 2^{-53} \approx 1.1 \times 10^{-16}$ • relative error on result can be much larger
  - e.g.  $fl(x-y) \leq \varepsilon (|x|+|y|)/(|x-y|)$  large for  $x \sim y$
  - fl( fl(x+y) + z )  $\neq$  fl( fl(x+z) + y)
- 32 bits vs 64 bits architectures
  - in 32 bits arch. operations done in double extended precision (t = 64), but stored as double in memory

# Scaling

- Importance to try to keep numbers around 1
- Better to apply a linear transformation to the data to have location and scale around 1
  - Non-sense using for observables units not close to 1 (e.g use GeV instead of eV)
  - scale is defined by physical quantities (e.g. detector resolution)
  - use reasonable ranges

do not use here a scale from 1.x10<sup>9</sup> to 10x10<sup>9</sup> ( eV)



4

## **Standard Deviation**

- Computing the sample variance is numerically difficult when  $\mu$  <<  $\sigma$ 
  - $\bullet$  Normally  $s^2$  and  $\mu$  computed with one pass

$$s^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N} = \sum_{i=1}^{N} \frac{x_{i}^{2}}{N} - \left(\sum_{i=0}^{N} \frac{x_{i}}{N}\right)^{2}$$

- numerical error when making difference of two positive numbers
- A possible solution is to accumulate  $x_k M_{k-1}$

$$M_{1} = x_{1} \qquad M_{k} = M_{k-1} + \frac{w_{k} - M_{k-1}}{k} \longrightarrow \hat{\mu} = M_{N}$$
$$S_{1} = 0 \quad S_{k} = S_{k-1} + \frac{(k-1)(x_{k} - M_{k-1})^{2}}{k} \longrightarrow s^{2} = \frac{S_{N}}{N}$$

# **Example: Histograms**

- Histogram classes in single (TH1F) and double precision (TH1D)
  - axis always represented in double precision
    - choose correct bin boundaries

$$i_{bin} = \operatorname{int}\left(n_{bins}\frac{x - x_{MIN}}{x_{MAX} - x_{MIN}}\right)$$



- single precision often enough
  - save memory for large multi-dim histograms
- double precision often not really needed (apart from cases with large number of counts/bin)
  - provided also a **TH1I** (integer bin content)
  - if memory is not an issue, better always to use double precision

# Matrix and Vector Libraries

- ROOT Mathematical Libraries provide:
  - Template vector and matrix classes (in any dimension)
    - e.g. SMatrix< N, double>
  - Template classes for geometry and physics vectors
    - e.g. LorentzVector<PxPyPzE4D<double>>
  - classes can be used in single and double precision
- Often no need double precision for measured quantities (observables)
- Simple mathematical computations could be done in single precision
  - faster if using vectorization
- Need double precision for transformation (e.g. rotation) or when performing large summation

# Math and Stat Functions

- All Math functions (transcendental, special functions and statistical functions) in ROOT are provided in double precision
  - maybe (for some dedicated cases) a faster single-precision function could be needed

old implementation (ROOT version 4)



new implementation based on Cephes in ROOT 5

#### **Function Minimization**

- One of the most used algorithm in data analysis
- Function minimization is needed in statistical analysis
  - fitting data points (non-linear least square fits)
  - maximum likelihood fits (parameter estimation) and for error analysis (interval estimation)
    - likelihood  $L(x|\theta) = \prod_{i} P(x_i|\theta)$ • minimum of  $-\log L = \sum_{i} \log P(x_i|\theta)$

# **Example: Higgs Searches**

 Higgs search results require numerous minimization of complex likelihood functions (> 200 parameters)



# MINUIT Algorithm

- Migrad based on Variable Metric algorithm (Davidon)
- Iterate to find function minimum:
  - start from initial estimate of gradient  $\mathbf{g}_0$  and Hessian matrix,  $\mathbf{H}_0$
  - find Newton direction:  $\mathbf{d} = \mathbf{H}^{-1}\mathbf{g}$
  - computing step by searching for minimum of **F(x)** along **d**
  - compute gradient **g** at the new point
  - update inverse Hessian matrix, H<sup>-1</sup> at the new point using an approximate formula (Davidon, Powell, Fletcher)
    - better updating inverse H<sup>-1</sup> than Hessian H
    - matrix is positive defined but numerical errors can make it not
  - repeat iteration until expected distance from minimum smaller than required tolerance ( $edm = g^T H^{-1} g$ )

## Numerical Errors

- What is effect of numerical errors in MINUIT ?
  - Minimization will be less efficient,

 $\Rightarrow$  more iterations  $\Rightarrow$  more CPU time

but minimizer will converge anyway

- Minimization could fail, not being able to converge to a minimum with the required tolerance
   interest in absolute tolerance: ΔL = 0.5 ⇒ 1 σ error in parameters
- Error in inverting the covariance matrix
- In same case could converge to a different minimum (e.g. a local one)

 $\Rightarrow$  obtain a wrong result

#### Numerical Errors (2)

- What are the cause of numerical errors ?
  - error in objective function when computing the sum of n elements:  $-\log L = \sum_{i} \log P(x_i|\theta)$ 
    - error :  $\sim n\epsilon$  double precision is needed
  - can have also errors from:
    - computation of log( P(x) )
    - normalization of P(x) due to numerical integration
  - Error in computing derivatives of log-likelihood

# **Derivative Errors**

- MINUIT provides algorithm for computation of derivatives via finite differences
- using analytical derivatives is often prohibitive in case of very complex models
  - numerical differentiation is very convenient for users
  - minimization is very sensitive to derivative errors
    - when closer to the function minimum gradient becomes closer to zero
    - difficulty in converging in case of error in derivatives

#### **Computation of Derivatives**

Compute derivatives by finite differences

$$\frac{\partial f}{\partial x_{i}} \approx \frac{f(x_{i} + \delta x_{i}) - f(x_{i} - \delta x_{i})}{2\delta x_{i}}$$

$$\epsilon_{TOT} = \frac{|f'''(\mu)|}{6}h^{2} + \epsilon_{R}\frac{|f|}{h}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

$$h_{OPT} = \left(\frac{3\epsilon_{R}|f|}{|f'''(\mu)|}\right)^{1/3}$$

Essential to find the right scale or step size Algorithm in Minuit uses an iterative procedure starting from an initial user estimate

# Numerical Integration

- Problematic to use Monte Carlo integration to normalize the PDF when minimizing the likelihood
  - error will be too large and random
- Use adaptive numerical integration:

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

- numerical error under control if sum is not too large
- important to define the right integration range
  - e.g. when integrating a very sharp peak

#### **Error in Likelihood Evaluation**

• In complex fits (e.g Higgs combination) log-likelihood is obtained by adding several channels.

$$-\log L(x|\mu,\theta) = \sum_{c \in channel} \sum_{i} \log P_c(x_{i_c}|\mu,\theta) + \sum_{\substack{\theta_k \\ \text{channel P.D.F (model)}}} \log P_k(\theta_k^0|\theta_k)$$

- Each channel can have different scale in log-likelihood and different numerical error
- Possible solution (used by CMS): improve error by setting an offset for each log-likelihood component (each channel) so it is equal to 0 for nominal values
  - fits are converging much better after this re-scaling

### Numerical Error Estimation

- Rude estimate of numerical error in function evaluation
  - scan the function around x with decreasing stepsizes



# **Error in Summation**

- Summing can be problematic also when computing the likelihood sum in parallel
  - different order of computation will result in different result for numerical error
  - can happen when using multi-threads or multi-processes with some dynamic scheduling
  - one must be careful also with vectorization
    - e.g. using *-fast-math* option in gcc
- Summing errors can be mitigated using compensated summation (Kahan)

#### Matrix Computation

- Computing inverse of a matrix is very sensitive to numerical errors
  - Linear system: better to solve directly without computing inverse
  - inverse needed for statistical analysis: covariance matrix (parameter errors), unfolding, etc..
- ROOT provides various matrix decomposition algorithms for solving linear systems and finding the inverse
  - LU, Bunch-Kaufmann, Choleski, QR and SVD
  - error depends on condition number
    - $k = ||A|| ||A^{-1}||$
    - accuracy in solution ~  $\varepsilon 10^k$  ~  $10^{-(16-k)}$  for double precision

#### **Example: Small Matrix Inversion**

- ROOT provides also fast inversion for small matrices (up to size 5) using Cramer (TMatrix::InvertFast, SMatrix::InvertFast)
  - factor of 2 faster, since code can be written explicitly
  - suffer from numerical problems:

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ based on } \det(A) = a * d - b * c$ 

- Example if A is 5x5 matrix one can get results as
  - AA<sup>-1</sup> using fast Cramer inv.: error ~ 10<sup>-6</sup>
  - AA<sup>-1</sup> with LU decomposition: error ~ 10<sup>-12</sup>

# Summary

- Importance of being aware of floating point traps in performing numerical calculations
  - must not ignore floating point errors, although observables measured at a much less precision
  - learn how numerical errors arise in most used algorithms of data analysis
  - hope you will learn later how you can control better these numerical errors

### References

#### • Wikipedia:

- <u>http://en.wikipedia.org/wiki/Floating\_point</u>
- W. Kahan home page (with code examples)
  - http://www.cs.berkeley.edu/~wkahan/
- N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM book, 2002
- D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys 23, 5–48
- D. Monniaux, *The pitfall of verifying floating-point computations*, ACM Transactions on Programming Languages and Systems 30, 3 (2008) 12