Floating Point Issues in Data Analysis

Lorenzo Moneta
CERN, PH-SFT

CERN/Intel workshop on Numerical Computing September 25-26, 2012, CERN

Outline

- Introduction
- ROOT Mathematical libraries
- Numerical Errors in Fitting and Minimization
- numerical derivative error
- summation error
- Error in Matrix computation (inversion)
- Summary

Introduction

- Floating Points
- $\mathrm{fl}(\mathrm{x})=\mathrm{x}(1+\varepsilon)$

$$
\text { If } \beta=2, t=3, e_{\min }=-1, \text { and } e_{\max }=3
$$

- $\mathrm{fl}(\mathrm{x}$ op y$)=\left(\mathrm{x}\right.$ op y) $(1+\varepsilon)$ op $=+,-, /$,* $\quad \epsilon \leq u=\frac{1}{2} \beta^{1-t}$
- single precision (32 bits), $u=2^{-24} \approx 6 \times 10^{-8}$

IEEE 754

- double precision (64 bits): $u=2^{-53} \approx 1.1 \times 10^{-16}$
- relative error on result can be much larger
- e.g. $f l(x-y) \leqslant \varepsilon(|x|+|y|) /(|x-y|)$ large for $x \sim y$
- $\mathrm{fl}(\mathrm{fl}(\mathrm{x}+\mathrm{y})+\mathrm{z}) \neq \mathrm{fl}(\mathrm{fl}(\mathrm{x}+\mathrm{z})+\mathrm{y})$
- 32 bits vs 64 bits architectures
- in 32 bits arch. operations done in double extended precision $(t=64)$, but stored as double in memory

Scaling

- Importance to try to keep numbers around 1
- Better to apply a linear transformation to the data to have location and scale around 1
- Non-sense using for observables units not close to 1 (e.g use GeV instead of eV)
- scale is defined by physical quantities (e.g. detector resolution)
- use reasonable ranges
do not use here a scale from 1. x10 ${ }^{9}$ to $10 \times 10^{9}(\mathrm{eV})$

Standard Deviation

- Computing the sample variance is numerically difficult when $\mu \ll \sigma$
- Normally s ${ }^{2}$ and μ computed with one pass

$$
s^{2}=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{N}=\sum_{i=1}^{N} \frac{x_{i}^{2}}{N}-\left(\sum_{i=0}^{N} \frac{x_{i}}{N}\right)^{2}
$$

- numerical error when making difference of two positive numbers
- A possible solution is to accumulate

$$
\begin{gathered}
M_{1}=x_{1} \quad M_{k}=M_{k-1}+\frac{x_{k}-M_{k-1}}{k} \quad \longrightarrow \quad \hat{\mu}=M_{N} \\
S_{1}=0 \quad S_{k}=S_{k-1}+\frac{(k-1)\left(x_{k}-M_{k-1}\right)^{2}}{k} \quad \longrightarrow \quad s^{2}=\frac{S_{N}}{N}
\end{gathered}
$$

Example: Histograms

- Histogram classes in single (TH1F) and double precision (TH1D)
- axis always represented in double precision
- choose correct bin boundaries

$$
i_{b i n}=\operatorname{int}\left(n_{b i n s} \frac{x-x_{M I N}}{x_{M A X}-x_{M I N}}\right)
$$

- single precision often enough

Example Histogram

- save memory for large multi-dim histograms
- double precision often not really needed (apart from cases with large number of counts/bin)
- provided also a TH1I (integer bin content)
- if memory is not an issue, better always to use double precision

Matrix and Vector Libraries

- ROOT Mathematical Libraries provide:
- Template vector and matrix classes (in any dimension)
- e.g. SMatrix< N, double>
- Template classes for geometry and physics vectors
- e.g. LorentzVector<PxPyPzE4D<double>>
- classes can be used in single and double precision
- Often no need double precision for measured quantities (observables)
- Simple mathematical computations could be done in single precision
- faster if using vectorization
- Need double precision for transformation (e.g. rotation) or when performing large summation

Math and Stat Functions

- All Math functions (transcendental, special functions and statistical functions) in ROOT are provided in double precision
- maybe (for some dedicated cases) a faster single-precision function could be needed
old implementation (ROOT version 4)

new implementation based on Cephes in ROOT 5

Function Minimization

- One of the most used algorithm in data analysis
- Function minimization is needed in statistical analysis
- fitting data points (non-linear least square fits)
- maximum likelihood fits (parameter estimation) and for error analysis (interval estimation)
- likelihood

$$
L(x \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)
$$

minimum of $-\log L=\sum_{i} \log P\left(x_{i} \mid \theta\right)$

Example: Higgs Searches

- Higgs search results require numerous minimization of complex likelihood functions (>200 parameters)

MINUIT Algorithm

- Migrad based on Variable Metric algorithm (Davidon)
- Iterate to find function minimum:
- start from initial estimate of gradient \mathbf{g}_{0} and Hessian matrix, $\mathbf{H}_{\mathbf{0}}$
- find Newton direction: $\mathbf{d}=\mathbf{H}^{-1} \mathbf{g}$
- computing step by searching for minimum of $\mathbf{F}(\mathbf{x})$ along \mathbf{d}
- compute gradient \mathbf{g} at the new point
- update inverse Hessian matrix, \mathbf{H}^{-1} at the new point using an approximate formula (Davidon, Powell, Fletcher)
- better updating inverse \mathbf{H}^{-1} than Hessian \mathbf{H}
- matrix is positive defined but numerical errors can make it not
- repeat iteration until expected distance from minimum smaller than required tolerance $\left(\mathbf{e d m}=\mathbf{g}^{\mathbf{T}} \mathbf{H}^{\mathbf{- 1}} \mathbf{g}\right)$

Numerical Errors

- What is effect of numerical errors in MINUIT ?
- Minimization will be less efficient, \Rightarrow more iterations \Rightarrow more CPU time but minimizer will converge anyway
- Minimization could fail, not being able to converge to a minimum with the required tolerance interest in absolute tolerance: $\Delta \mathrm{L}=0.5 \Rightarrow 1 \sigma$ error in parameters
- Error in inverting the covariance matrix
- In same case could converge to a different minimum (e.g. a local one)
\Rightarrow obtain a wrong result

Numerical Errors (2)

- What are the cause of numerical errors ?
- error in objective function when computing the sum of n elements:

$$
-\log L=\sum_{i} \log P\left(x_{i} \mid \theta\right)
$$

- error: $\sim \mathrm{n} \varepsilon$ double precision is needed
- can have also errors from:
- computation of $\log (\mathrm{P}(\mathrm{x}))$
- normalization of $\mathrm{P}(\mathrm{x})$ due to numerical integration
- Error in computing derivatives of log-likelihood

Derivative Errors

- MINUIT provides algorithm for computation of derivatives via finite differences
- using analytical derivatives is often prohibitive in case of very complex models
- numerical differentiation is very convenient for users
- minimization is very sensitive to derivative errors
- when closer to the function minimum gradient becomes closer to zero
- difficulty in converging in case of error in derivatives

Computation of Derivatives

- Compute derivatives by finite differences

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{i}} \approx \frac{f\left(x_{i}+\delta x_{i}\right)-f\left(x_{i}-\delta x_{i}\right)}{2 \delta x_{i}} \\
& \epsilon_{T O T}=\frac{\left|f^{\prime \prime \prime}(\mu)\right|}{6} h^{2}+\epsilon_{R} \frac{|f|}{h} \\
& h_{O P T}=\left(\frac{3 \epsilon_{R}|f|}{\left|f^{\prime \prime \prime}(\mu)\right|}\right)^{1 / 3} \\
& 1^{10^{4}} \mid \\
& 10^{-16} \\
& 10^{-16} 10^{-12}
\end{aligned}
$$

Essential to find the right scale or step size Algorithm in Minuit uses an iterative procedure starting from an initial user estimate

Numerical Integration

- Problematic to use Monte Carlo integration to normalize the PDF when minimizing the likelihood
- error will be too large and random
- Use adaptive numerical integration:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- numerical error under control if sum is not too large
- important to define the right integration range
- e.g. when integrating a very sharp peak

Error in Likelihood Evaluation

- In complex fits (e.g Higgs combination) log-likelihood is obtained by adding several channels.
$-\log L(x \mid \mu, \theta)=\sum_{c \in \text { channel }} \sum_{i} \log P_{c}\left(x_{i_{c}} \mid \mu, \theta\right)+\sum_{\theta_{k}} \log P_{k}\left(\theta_{k}^{0} \mid \theta_{k}\right)$
- Each channel can have different scale in log-likelihood and different numerical error
- Possible solution (used by CMS): improve error by setting an offset for each log-likelihood component (each channel) so it is equal to 0 for nominal values
- fits are converging much better after this re-scaling

Numerical Error Estimation

- Rude estimate of numerical error in function evaluation
- scan the function around x with decreasing stepsizes
h~0.1
log-likelihood function

Error in Summation

- Summing can be problematic also when computing the likelihood sum in parallel
- different order of computation will result in different result for numerical error
- can happen when using multi-threads or multi-processes with some dynamic scheduling
- one must be careful also with vectorization
- e.g. using -fast-math option in gcc
- Summing errors can be mitigated using compensated summation (Kahan)

Matrix Computation

- Computing inverse of a matrix is very sensitive to numerical errors
- Linear system: better to solve directly without computing inverse
- inverse needed for statistical analysis: covariance matrix (parameter errors), unfolding, etc..
- ROOT provides various matrix decomposition algorithms for solving linear systems and finding the inverse
- LU, Bunch-Kaufmann, Choleski, QR and SVD
- error depends on condition number
- $\mathrm{k}=\|\mathrm{A}\|\left\|\mathrm{A}^{-1}\right\|$
- accuracy in solution $\sim \varepsilon 10^{\mathrm{k}} \sim 10^{-(16-\mathrm{k})}$ for double precision

Example: Small Matrix Inversion

- ROOT provides also fast inversion for small matrices (up to size 5) using Cramer (TMatrix::InvertFast, SMatrix::InvertFast)
- factor of 2 faster, since code can be written explicitly
- suffer from numerical problems:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { based on } \operatorname{det}(A)=a * d-b * c
$$

- Example if A is 5×5 matrix one can get results as
- AA^{-1} using fast Cramer inv.: error $\sim 10^{-6}$
- AA^{-1} with LU decomposition: error $\sim 10^{-12}$

Summary

- Importance of being aware of floating point traps in performing numerical calculations
- must not ignore floating point errors, although observables measured at a much less precision
- learn how numerical errors arise in most used algorithms of data analysis
- hope you will learn later how you can control better these numerical errors

References

- Wikipedia:
- http://en.wikipedia.org/wiki/Floating point
- W. Kahan home page (with code examples)
- http://www.cs.berkeley.edu/~wkahan/
- N. J .Higham, Accuracy and Stability of Numerical Algorithms, SIAM book, 2002
- D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys 23, 5-48
- D. Monniaux, The pitfall of verifying floating-point computations, ACM Transactions on Programming Languages and Systems 30, 3 (2008) 12

