## Workshop on Numerical Computing

## Floating-Point Arithmetic

Jeff Arnold, Intel Corporation
CERN 25 September 2012

## Agenda

## CERN

 openlab- Part I - Fundamentals
- Motivation
- Some properties of floating-point numbers
- Standards
- More about floating-point numbers
- A trip through the floating-point numbers
- Part II - Techniques
- Error-free transformations
- Summation
- Dot product
- Polynomial evaluation


## Motivation

- Why is floating-point arithmetic important?
- Reasoning about floating-point arithmetic
- Why do standards matter?
- Techniques which improve floating-point
- Accuracy
- Versatility
- Performance


## Why is Floating-Point Arithmetic Important?

- It is ubiquitous in scientific computing
- Most research in HEP can't be done without it
- Need to implement algorithms which
- Get the best answers
- Get the best answers quickly
- Get the best answers all the time
- A rigorous approach to floating-point is seldom taught in programming courses
- Too many think floating-point arithmetic is
- Approximate in a random ill-defined sense
- Mysterious
- Often wrong


## Reasoning about Floating-Point Arithmetic

## It's important because

- One can prove algorithms are correct
- One can even prove they are portable
- One can estimate the round-off and approximate errors in calculations
- This knowledge increases confidence in floating-point calculations and results


## Some Properties of Floating-Point Numbers

- They aren't the same as the real numbers encountered in mathematics
- They do not form a field
- Some common rules of arithmetic are not always obeyed
- There are only a finite number of them
- They are all rational numbers
- but they are only a subset of the rationals
- thus none of them are irrational


## Some Properties of Floating-Point Numbers

- Even if $a$ and $b$ are floating-point numbers, $a \oplus b$ may not be
- Similarly for $\ominus, \otimes$ and $\oslash$
- Operations may not associate:
- $(a \oplus b) \oplus c \neq a \oplus(b \oplus c)$
- Similarly for $\ominus$ and $\otimes$
- Operations may not distribute:
- $a \otimes(b \oplus c) \neq(a \otimes b) \oplus(a \otimes c)$


## Standards

There have been three major standards affecting floating-point arithmetic:

- IEEE 754-1985 Standard for Binary FloatingPoint Arithmetic
- IEEE 854-1987 Standard for Radix Independent Floating-Point Arithmetic
- IEEE 754-2008 Standard for Floating-Point Arithmetic
- We will concentrate on this one since it is current


## IEEE 754-1985

## Standardized/specified

- Formats
- Rounding modes
- Operations
- Special values
- Exceptions


## IEEE 754-1985

- Only described binary floating-point arithmetic
- Two basic formats specified:
- single precision (mandatory)
- double precision
- An extended format was associated with each basic format
- Double extended: the IA32 "80-bit" format


## IEEE 854-1987

- "Radix-independent"
- But essentially only radix 2 or 10 considered
- Established constraints on the relationships between
- Number of bits of precision
- Mininum and maximum exponent
- Established constraints between various formats


## The Need for a Revision

- Standardize common practices
- Quadruple precision
- Standardize effects of new/improved algorithms
- Radix conversion
- Correctly rounded elementary functions
- Remove ambiguities
- Improve portability


## IEEE 754-2008

- Merged 754-1985 and 854-1987
- But tried not to invalidate hardware which conformed to 754-1985
- Standardized
- Quadruple precision
- Fused multiply-add (FMA)
- Resolve ambiguities
- Aids portability between implementations


## IEEE 754-2008

## Formats

- Interchange
- Used to exchange floating-point data between implementations/platforms
- Fully specified as bit strings
- Does not address endianness
- Extended and Extendable formats
- Encodings not specified
- May match interchange formats
- Arithmetic formats
- A format which represents operands and results for all operations required by the standard


## Format of a Binary Floating-point Number



| IEEE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Format | Storage <br> Size | w | p | $\boldsymbol{e}_{\min }$ | $\boldsymbol{e}_{\max }$ |
| Binary32 | Single | 32 | 8 | 24 | -126 | +127 |
| Binary64 | Double | 64 | 11 | 53 | -1022 | +1023 |
| Binary128 | Quad | 128 | 15 | 113 | -16382 | +16383 |

## IEEE 754-2008

## CERN openlab

## Formats

- Basic formats:
- Binary with lengths of 32,64 and 128 bits
- Decimal with lengths of 64 and 128 bits
- Other formats:
- Binary with a length of 16 bits

$$
\begin{aligned}
& -p=11 \\
& -e_{\min }=-14, e_{\max }=+15
\end{aligned}
$$

- Decimal with a length of 32 bits


## IEEE 754-2008

## Larger Formats

- Parameterized based on size $k$ :
- $k \geq 128$ and must be a multiple of 32
- $p=k$-roundnearest $\left(4 \times \log _{2}(k)\right)+13$
- $w=k-p$
- $e_{\max }=2^{w-1}-1$
- For example, on all conforming platforms, Binary1024 will have:
- $k=1024$
- $p=1024-40+13=997$
- $w=27$
- $e_{\max }=+67108863$


## IEEE 754-2008

CERN openlab

- Radix
- Either 2 or 10
- Representation specified by
- Radix
- Sign
- Exponent
- Biased exponent
- $e_{\min }$ must be equal to $1-e_{\max }$
- Significand
- "hidden bit" format used for normal values


## We're not going to consider every possible format

For this workshop, we will limit our discussion to

- Radix 2
- Binary32, Binary64 and Binary128 formats
- Covers SSE and AVX
- l.e., modern processors
- Not considering "double extended" format
- "IA32 x87" format
- Not considering decimal formats
- Round to nearest even


## Value of a Floating-Point Number

The value of a floating-point number is determined by 4 quantities:

- $\operatorname{sign} s \in\{0,1\}$
- radix $\beta$
- Sometimes called the "base"
- precision $p$
- the digits are $x_{i}, 0 \leq i<p$, where $0 \leq x_{i}<\beta$
- exponent $e$ is an integer
- $e_{\min } \leq e \leq e_{\max }$


## Value of a Floating-Point Number

The value of a floating-point number can be expressed as

$$
x=(-)^{s} \beta^{e} \sum_{i=0}^{p-1} x_{i} \beta^{-i}
$$

where the significand is

$$
m=\sum_{i=0}^{p-1} x_{i} \beta^{-i}
$$

with

$$
0 \leq m<\beta
$$

## Value of a Floating-Point Number

## CERN openlab

The value can also be written

$$
x=(-)^{s} \beta^{e-p+1} \sum_{i=0}^{p-1} x_{i} \beta^{p-i-1}
$$

where the integral significand is

$$
M=\sum_{i=0}^{p-1} x_{i} \beta^{p-i-1}
$$

with

$$
0 \leq M<\beta^{p}
$$

## Operations specified by IEEE 754-2008

- Addition, subtraction
- Multiplication
- Division
- Remainder
- Square root
- All with correct rounding
- correct rounding: return the correct finite result using the current rounding mode


## Operations

- Conversion to/from integer
- Conversion to integer must be correctly rounded
- Conversion to/from decimal strings
- Conversions must be monotonic
- Under some conditions, binary $\rightarrow$ decimal $\rightarrow$ binary conversions must be exact


## Special Values

## CERN openlab

- Zero
- signed
- Infinity
- signed
- NaN
- Quiet NaN
- Signaling NaN
- NaNs do not have a sign: they aren't a number
- the sign bit is ignored
- NaNs can "carry" information


## Exceptions Specified by IEEE 754-2008

## CERN openlab

- Underflow
- Absolute value of a non-zero result is less than $\beta^{e_{\text {min }}}$ (i.e., it is subnormal)
- Some ambiguity: before or after rounding?
- Overflow
- Absolute value of a result greater than the largest finite value $\Omega=2^{e_{\max }} \times\left(2-2^{1-p}\right)$
- Result is $\pm \infty$
- Division by zero
- $x / y$ where $x$ is finite and non-zero and $y=0$
- Inexact
- Result, after rounding, is not exact
- Invalid


## Exceptions Specified by IEEE 754-2008

 CERN openlab- Invalid
- An operand is a sNaN
- $\sqrt{x}$ where $x<0$

$$
- \text { however } \sqrt{-0}=-0
$$

- $(-\infty)+(+\infty),(+\infty)+(-\infty)$
- $(-\infty)-(-\infty),(+\infty)-(+\infty)$
- $( \pm 0) \times( \pm \infty)$
- $( \pm 0) /( \pm 0)$ or $( \pm \infty) /( \pm \infty)$
- some floating-point $\rightarrow$ integer or decimal conversions


## Rounding Modes in IEEE 754-2008

- round to nearest
- round to nearest even
- in the case of ties, select the result whose significand is even
- required for binary and decimal
- the default rounding mode for binary
- round to nearest away
- required only for decimal
- round toward $+\infty$
- round toward $-\infty$
- round toward 0

Transcendental and Algebraic Functions CERN openlab

The standard recommends the following functions be correctly rounded:

- $e^{x}, e^{x}-1,2^{x}, 2^{x}-1,10^{x}, 10^{x}-1$
- $\log _{\alpha}(\Phi)$ for $\alpha=e, 2,10$ and $\Phi=x, 1+x$
- $\sqrt{x^{2}+y^{2}}, 1 / \sqrt{x},(1+x)^{n}, x^{n}, x^{1 / n}$
- $\sin (x), \cos (x), \tan (x), \sinh (x), \cosh (x)$, $\tanh (x)$ and the inverse functions
- $\sin (\pi x), \cos (\pi x)$
- And more...


## Transcendental Functions

Why this may be difficult to do...
Consider $2^{1 . e 4596526 b f 94 d p-31}$

- The correct answer is $1.0052 f c 2 e c 2 b 537 f f f f f f f f f f f f f f 4$...
- You need to know the result to 115 bits to determine the correct rounding.
- "The Table-Makers Dilemma"
- Rounding $\approx f(x)$ gives same result as rounding $f(x)$
- See publications from ENS group


## Table-Makers Dilemma

## CERN openlab

"No general way exists to predict how many extra digits will have to be carried to compute a transcendental expression and round it correctly to some preassigned number of digits."
W. Kahan

## Convenient Properties

## Exact operations

- If $\frac{y}{2} \leq x \leq 2 y$ and subnormals are available, then $x-y$ is exact
- Sterbenz's lemma
- But what about catastrophic cancellation?
- Subtracting nearly equal numbers loses accuracy
- The subtraction itself does not introduce any error
- it may amplify a pre-existing error


## Convenient Properties

## Exact operations

- Multiplication/division by $2^{n}$ is exact
- In the absence of under/overflow
- Multiplication of numbers with significands having sufficient low-order 0 digits
- Precise splitting and Dekker's multiplication

Walking Through Floating-point Numbers


- •••
- 0x000£ffffffffffffell largest subnormal
- 0x0010000000000000
smallest normal
- 0x001fffffffffffff
- $0 \times 0020000000000000 \ldots \left\lvert\, \begin{aligned} & 2 \times \text { smallest } \\ & \text { normal }\end{aligned}\right.$

Walking Through Floating-point Numbers

- 0x0020000000000000 $\quad \left\lvert\, \begin{aligned} & 2 \times \text { smallest } \\ & \text { normal }\end{aligned}\right.$
- 0x7fefffffffffffffell largest normal
- 0x7ff0000000000000
- 0x7ff0000000000001

NaN


## Walking Through Floating-point Numbers

- $0 \times 8000000000000000$
- 0x8000000000000001

- 0x800£ffffffffffff
- $0 \times 8010000000000000$

|  | "largest" negative <br> subnormal <br> sumatest" negative |
| :--- | :--- |
| "smarmal |  |

- 0xffff0000000000000
- Oxfff0000000000001

- Oxffffffffffffffff



## End of Part I

## Time for a break...

## Q \& A



## Part II -- Techniques

- Error-Free Transformations
- Summation
- Dot Products
- Polynomial Evaluation
- Data Interchange


## Notation

- Floating-point operations are written:
- $\oplus$ addition
- $\ominus$ subtraction
- $\otimes$ multiplication
- Ø division
- $a \oplus b$ represents the floating-point addition of $a$ and $b$
- $a$ and $b$ are floating-point numbers
- the result is a floating-point number
- in general, $a+b \neq a \oplus b$
- A generic floating-point operation on $x$ is written $\circ(x)$


## Error-Free Transformations

An error-free transformation (EFT) is an algorithm which determines the rounding error associated with a floating-point operation.

- Addition/subtraction

$$
a+b=(a \oplus b)+t
$$

- Multiplication

$$
a \times b=(a \otimes b)+t
$$

- There are others


## Error-Free Transformations

- Under most conditions, the rounding error is itself a floating-point number
- $a+b=s+t$ where $s=a \oplus b$
- all values are floating-point numbers
- This is still a powerful analytical tool even when $t$ is not a floating-point number
- An EFT can be implemented using only floating-point computations in the working precision
- Rounding error is often called the approximation error


## EFT for Addition: FastTwoSum

```
Compute }a+b=s+t\mathrm{ where
- |a| \geq |b|
- s=a\bigoplusb
```

void
FastTwoSum( const double a, const double b,
double* s, double* t ) \{
// Requires that $|a| \geq|b|$
// No unsafe optimizations!
*s = a + b;
*t = b - ( *s - a );
return;
\}

## EFT for Addition: TwoSum

Compute $a+b=s+t$ where

- $s=a \oplus b$
void
TwoSum( const double a, const double b, double* $s$, double* $t$ ) \{
// No unsafe optimizations!
*s = a + b;
double $z={ }^{*} s-b ;$
*t $=(\mathrm{a}-\mathrm{z})+\left(\mathrm{b}-\left({ }^{*} \mathrm{~s}-\mathrm{z}\right)\right)$;
return;
\}


## EFTs for Addition

- A realistic implementation of FastTwoSum requires 3 floating-point operations and a branch
- TwoSum takes 6 floating-point operations but requires no branches
- TwoSum is usually faster on modern processors
- Recall that this discussion is restricted to radix 2 and round to nearest even
- this is required to prove TwoSum


## Precise Splitting Algorithm

- Known as Veltkamp's algorithm
- Calculates $x_{h}$ and $x_{l}$ such that $x=x_{h}+x_{l}$ exactly
- For $\delta<p$, where $\delta$ is a parameter, - The significand of $x_{h}$ fits in p $-\delta$ digits
- The significand of $x_{l}$ fits in $\delta$ digits
- No information is lost in the transformation


## Precise Splitting

## Code fragment

```
void
Split( const double x, const int delta,
                double* x_h, double* x_l ) {
    // No unsafe optimizations!
unsigned long c = (1UL << delta) + 1;
*x_h = ( c * x ) + ( x - ( c * x ) );
*x_l = x - x_h;
return;
}
```


## Precise Multiplication

## CERN openlab

- Dekker's algorithm
- Computes $s$ and t such that $a \times b=s+t$ where $\mathrm{s}=a \otimes b$


## Precise Multiplication Algorithm

```
\#define SHIFT_POW 27 /* \([p / 2\rceil\) for Binary64 */
void
Mult( const double a, const double b,
        double* s, double* t ) \{
    double a_high, a_low, b_high, b_low;
    // No unsafe optimizations!
    Split( a, SHIFT_POW, \&a_high, \&a_low );
    Split( b, SHIFT_POW, \&b_high, \&b_low );
    *s = x * y;
    *t = -*s + a_high * b_high ;
    *t += a_high * b_low + a_low * b_high;
    *t += a_low * b_low;
    return;
\}
```


## Summation Techniques

- Traditional
- Sorting and Insertion
- Compensated
- Distillation
- Multiple accumulators
- Reference: Higham


## Summation Techniques

Condition number

$$
C_{\text {sum }}=\frac{\left|\sum a_{i}\right|}{\sum\left|a_{i}\right|}
$$

- If $C_{\text {sum }}$ is "not too large," the problem is not ill-conditioned and traditional methods may suffice
- But if $C_{\text {sum }}$ is "too large," we want results appropriate to higher precision without actually using a higher precision
- But if higher precision is available, use it!


## Traditional Summation

CERN

- $s=\sum_{i=0}^{n} x_{i}$
- Code fragment

```
double
Sum( const double* x, const int n ) {
    int i;
    for ( i = 0; i < n; i++ ) {
                Sum += x[ i ];
        }
        return Sum;
}
```


## Traditional Summation

What can go wrong?

- Catastrophic cancellation
- loss of significance
- magnitude of operands nearly equal but signs differ: $x \approx-y$
- Small terms encountered when running sum is large
- the smaller terms don't affect the result
- but later large magnitude terms may reduce the running sum


## Sorting and Insertion

- Reorder the operands
- Increasing magnitude
- Decreasing magnitude
- Insertion
- First sort by magnitude
- Remove $x_{1}$ and $x_{2}$ and compute their sum
- Insert that sum on the list keeping it sorted
- Repeat until only 1 element is left on the list
- Many variations
- If lots of cancellation, sorting by decreasing magnitude can be better
- Sterbenz's lemma


## Compensated Summation

- Based on FastTwoSum and TwoSum techniques
- Knowledge of the exact rounding error in a floating-point addition is used to correct the summation


## Compensated Summation

- Code fragment

```
double
Kahan( const double* x, const int n ) {
    double sum = x[ 0 ];
    double c = 0.0;
    double y;
    int i;
    for ( i = 1; i < n; i++ ) {
        y = x[ i ] + c;
        FastTwoSum( sum, y, &sum, &c );
    }
    return sum;
}
```


## Compensated Summation

- Many variations known
- Consult the extensive literature:
- Kahan
- Knuth
- Priest
- Pichat and Neumaier
- Rump, Ogita and Oishi
- Shewchuk
- Arénaire Project (ENS)


## Other Summation Techniques

- Distillation
- Separate accumulators based on exponents of operands
- Additions are always exact until the accumulators are finally added
- Long accumulators
- Emulate greater precision
- double-double


## Choice of Summation Technique

- Performance
- Error bound
- independent of $n$ ?
- Condition number
- Is it known?
- Difficult to determine?
- Some algorithms allow it to be determined simultaneously with the sum
- It can be used to evaluate the suitability of the result
- No one technique fits all situations all the time


## Dot Product

- Use of EFTs
- Recast to summation
- Compensated dot product


## Dot Product

## CERN openlab

- Condition number:

$$
C_{\text {dot product }}=\frac{2 \sum_{i=1}^{n}\left|a_{i} \cdot b_{i}\right|}{\left|\sum_{i=1}^{n} a_{i} \cdot b_{i}\right|}
$$

- If $C$ is not too large, a traditional algorithm can be used


## Dot Product

- The dot product of 2 vectors of dimension $n$ can be reduced to computing the sum of $2 n$ floating-point numbers
- Split each element
- Form products
- Sum accurately
- Algorithms can be constructed such that the result computed in precision $p$ is as accurate as though the dot product was computed in precision $2 p$ and then rounding back
- Consult the work of Ogita, Rump and Oishi


## Polynomial Evaluation

## CERN openlab

- Horner's method
- Use of EFTs
- Compensated


## Polynomial Evaluation

## CERN openlab

Horner's method

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

where $x$ and all $a_{i}$ are all floating-point numbers

## Polynomial Evaluation

- Code fragment

```
double
Horner( const double* a, const int n,
        double x ) {
    int i;
    double p = 0.0;
    for ( i = n; i >= 0; i-- ) {
        p = p * x + a[ i ];
    }
    return p;
}
```


## Polynomial Evaluation

## CERN openlab

## Compensated Horner's method:

- Let $p_{0}=\operatorname{Horner}(\mathrm{a}, \mathrm{n}, \mathrm{x})$
- Determine $\pi(x)$ and $\sigma(x)$ where
- $\pi(x)$ and $\sigma(x)$ are polynomials of degree $n-1$ with coefficients $\pi_{i}$ and $\sigma_{i}$
- such that

$$
p(x)=p_{0}+\pi(x)+\sigma(x)
$$

## Polynomial Evaluation

## Compensated Horner's method:

- $p(x)=p_{0}+\pi(x)+\sigma(x)$
- Error analysis shows that under certain conditions, $p(x)$ is as accurate as evaluating $p_{0}$ in twice the working precision
- Even if those conditions are not met, one can apply the method recursively to $\pi(x)$ and $\sigma(x)$


## Data Interchange

Moving floating-point data between platforms without loss of information?

- Exchange binary data
- Use of \%a and \%A
- Encodes the internal bit patterns via hex digits
- Formatted decimal strings
- Requires sufficient decimal digits to guarantee "round-trip" reproducibility
- Depends on accuracy of run-time binary $\leftrightarrow$ decimal conversion routines on all platforms


## Bibliography

- D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, 23(1):5-47, March 1991.
- J.-M. Muller et al, Handbook of FloatingPoint Arithmetic, Birkäuser, Boston, 2010.
- N. J. Higham, Accuracy and Stability of Numerical Algorithms (2 $2^{\text {nd }}$ edition), SIAM, 2002.


## Bibliography

- Publications from CNRS/ENS Lyon/INRIA/Arénaire project (J.-M. Muller et al)
- Publications from Institute for Reliable Computing (Institut für Zuverlässiges Rechnen), Technische Universität Hamburg-Harburg (Siegfried Rump)


## Q \& A




