THE VDT MATHEMATICAL LIBRARY:
A MODERN REIMPLEMENTATION OF CEPH

V. Innocente CERN PH-SFT & CMS
T. Hauth CERN CMS
D. Piparo CERN PH-SFT & CMS

(1]

OUTLINE

A\ 77 —»two T|ets + X, 60 1D

 Motivation
* The Building Blocks of VDT

* Timing and accuracy measurements

279 CERN openlab/Intel Workshop on
Numerical Computing

CMS VERTEX CLUSTERING

two T jets + X, 60 1b

Reconstruct z coordinate of collisions vertices with
deterministic annealing algorithm

Outgoing

Tracks
Vertex 1 Vertex 2 Beamline
4>

< |
7 ﬁV 0 +Z
2 shown, in Outgoing
reality tenths Tracks
of them!

This algorithm accounted for 2.5% of overall
reconstruction time and 60% of the time budget of the
algorithm was represented by calls to exp

279 CERN openlab/Intel Workshop on
Numerical Computing

"~ MOTIVATION

A 7 —»two Tjets + X, 60 1b

* Floating point calculations: for an LHC experiment
represent a substantial portion of the overall time budget
of a typical data processing workflow

* A considerable part of these calculations 1s due to
transcendental mathematical functions

— 1.e. exp, log, atan

Requirements and compromises for the CMS experiment:
* A fast implementation of such functions

* An open source product

* Possible to pay a price in terms of accuracy

That’s why we developed the VDT mathematical library

29 CERN openlab/Intel Workshop on

Numerical Computing 4

THE BUILDING BLOCKS OF VDT

Tjets + X, 60 1b

Starting point: the well known Cephes library
* Developed by Stephen Moshier in the eighties in C
* Pade’ approximation

* Single, double and quad precision

Tool: a modern compiler like GCC 4.7

* Autovectorisation capabilities of GCC are getting
more and more mature

* Go the extra mile: make the functions not only fast,
but autovectorisable!

29 CERN openlab/Intel Workshop on
Numerical Computing

THE VDT MATHEMATICAL LIBRARY

two T jets + X, 60 1D

A collection of transcendental mathematical functions

— Which are fast and approximate [E'PL‘g

— Licenced under LGPL3 Free as in Freedom

— Which can be used in loops autovectorised by the compiler

The functions implemented at the moment are (double and

single precision):
v Exp, Log sle and Double precisio
v (A)Sin (A)COS (A)Tan implementations are different.
v' 14/ (different precision levels)

Signatures (1dentical for single precision):

1. double (double) — referred to as scalar signature

2. void(unsigned int, double*, double*) — referred to as array
signature (Just a simple for loop calling the scalar version)

279 CERN openlab/Intel Workshop on
Numerical Computing

THE VDT MATHEMATICAL LIBRARY

*7 —»two Tjets + X, 60 1b

Existing code can be converted easily (“sed”™)

* VDT functions symbols: fast_<function_name>[f][v]
— ftor floats, v for arrays

Functions are inline:

* The compiler does a lot of work by itself

* Portability for present and future targets
— ARM, KNC, GPUs..

Scalar functions usable 1n loops to exploit autovectorisation

Distributed with tools for accuracy and speed diagnostics

279 CERN openlab/Intel Workshop on
Numerical Computing

COMPARISONS WITH EXISTING LIBRARIES

v —»two Tjets + X, 60 1b

Three references considered for comparisons of speed and

accuracy of VDT: Libm, VC and SVML

VC (version 0.6.1):

* Open source

* Uses 1ntrinsics

* Inspired as well by Cephes

* Exp, Tan, Acos not provided yet

SVML:

* Intel product intel®)

* (Closed source

e Used with GCC
— ... -mveclibabi=svml —L<SVML LIB DIR> -lsvml ...

29 CERN openlab/Intel Workshop on
Numerical Computing

TIMING
MEASUREMENTS

N

279 CERN openlab/Intel Workshop on
Numerical Computing

THE SETUP OF THE MEASUREMENTS

*T »two Tjets + X, 60 1b

Machine:

Intel Core 17-3930K CPU @ 3.20GHz (AVX SIMD
instructions supported)

Compiler:
GCC 4.7.1, -Ofast flag

Input:
* 1 Million random numbers repeated 150 times
* Subtraction of call overhead using “Identity” function:

f(x)=x

29 CERN openlab/Intel Workshop on
Numerical Computing

10

DOUBLE PRECISION: VDT & LIBM

two T jets + X, 60 1b

Function Libm VDT VDT SSE VDT AVX

Exp 16.7 6.1 3.8 2.9
Log 34.9 12.5 5.7 4.2
Sin 33.7 16.2 6.0 5.7
Cos 34.4 13.4 5.4 5.1
Tan 46.6 12.5 6.3 5.6
Asin 23.0 10.3 8.6 8.1
Acos 23.7 11.0 8.2 8.1
Atan 19.7 11.0 8.3 8.3
Isqrt 9.3 6.7 3.0 2.1

Time in nanoseconds per value calculated

VDT scalar functions: already much faster than Libm

* Speedups of about 4x can be achieved.

Speedup from scalar to SSE more significant than from SSE to AVX
* Some overhead is present

29 CERN openlab/Intel Workshop on

Numerical Computing H

DOUBLE PRECISION: VDT & LIBM

Libm “ VDT
/DT SSE = VDT AVX

Sin
Cos
Asin Tan
Netplot showing time/execution in ns for Libm and VDT scalar and array signatures. The smaller
the area, the faster the function. 2nd CERN openlab/Intel Workshop on

Numerical Computing =

DOUBLE PRECISION: VDT, SVML & VC

two Tjets + X, 60 1

Function VDT SSE svml SSE VDT AVX svml| AVX VC AVX

Exp 3.84 3.02 2.93 3.08)
Log 5.72 5.27 4.25 4.72 5.46
Sin 6.03 4.57 5.66 4.31 3.6
Cos 5.36 5.03 5.06 4.79 3.06
Tan 6.27 4.86 5.61 4.67 X
Asin 8.65 6.65 8.16 6.34 5.44
Acos 8.19 6.18 8.15 5.94 X
Atan 8.26 8.36 8.3 8.34 6.22
Isqrt 2.95 5.24* 2.1 5.22* 5.07

Time in nanoseconds per value calculated

Svml and VDT: speed is comparable
VC slightly faster but:

* Sin/Cos: power series: see accuracy

* Pade’ approximant for single precision used for doubles: see accuracy

* Obtained with 1/sqrt

29 CERN openlab/Intel Workshop on

Numerical Computing =

SINGLE PRECISION: VDT & LIBM

two T jets + X, 60 1b

Expf 180 6.76 2.50 2.07 *Reducing range
Logf 12.6 13.1 2.48 1.90 to [-10,10]

Sinf 180* 12.2 2.69 2.00

Cosf 180* 10.1 2.45 1.71 Sinf 17.9
Tanf 183* 12.4 3.31 2.58 Cosf 18.4
Asinf 12.1 8.93 2.00 0.71 Tanf | 26.1
Acosf 14.6 9.42 2.16 0.72
Atanf 10.8 6.01 1.92 0.70

Isqrtf 5.02 2.99 0.58 0.42

Time in nanoseconds per value calculated

279 CERN openlab/Intel Workshop on

Numerical Computing 4

SINGLE PRECISION: VDT & LIBM

30
i Libm

ns / call

|
25
VDT

20

15

10

Expf Logf Sinf Cosf Tanf Asinf Acosf Atanf Isqrtf
Scalar Signatures

279 CERN openlab/Intel Workshop on

Numerical Computing =

ACCURACY/SPEED TRADE-OFF

two 7 jets + X, 60 1b

Inverse square root is implemented as an iterative process

Two levels of accuracy implemented (2 and 3 iterations)

Function Libm* VDT VDTSSE VDT AVX

Fast_isqrt 9.3 6.7 2.9 2.1
Appr_isqrt | 93 44 2 15
Double precision, time in nanoseconds per value

Range / speed Trade-Off possible and probably beneficial in
some cases, but not discussed today.

* To be precise, GCC intrinsics.

279 CERN openlab/Intel Workshop on

Numerical Computing 16

AN EXAMPLE: CMS'VERTEX CLUSTERING

two T jets + X, 60 1D

Outgoing

Tracks
Vertex 1 Vertex 2 Beamline
<€

Y —>
7 ﬁ% 0 +Z
Outgoing
Tracks

Exp represents 60% of the time consumed by this
algorithm

—>Perfect case for a fast mathematical library
Moving to VDT:
* Algorithm 2x faster
* From 2.5% to 1.2% of the total reconstruction time!
Improvement used in production by CMS since January

279 CERN openlab/Intel Workshop on
Numerical Computing

17

ACCURACY
\ MEASUREMENTS

279 CERN openlab/Intel Workshop on

\ Numerical Computing 18

ABOUT THE MEASUREMENT

tjets + X, 60 1b

* The results yielded by the VDT functions
validated against Libm.

* Same procedure applied to Svml and VC.

* The results are presented in terms of most
significant different bit.

279 CERN openlab/Intel Workshop on

Numerical Computing o

“DOUBLE PRECISION

»two T |ets + X, 60 1D

- MAX VDT|AVG VDT AVG svml | MAX VC | AVG VC

8 0.39 2 0.79
m 2 0.32 2 0.24 26 24.3
. Atan R 0.33 2 0.28 28 2.97
2 0.25 2 0.35 35 23.3
 Exp [0.14 2 0.43 X X
m 2 0.45 0 X X X
2 0.42 1 0 1 0.01
. sin) 0.25 2 0.35 35 23.3
2 0.35 3 0.49 X X
- Apr isqrt L 12.65 X X X X

* Svml accuracy comparable with the VDT one
— Values approximate but still ok for a wide range of applications

* VC: usage of single precision pade‘ approximation for doubles, loss
of precision in the range reduction

279 CERN openlab/Intel Workshop on

Numerical Computing 20

~ ACCURACY PLOTS

»two T |ets + X, 60 1D

| Tanv diffbit for test | Diffbit_Tanv Isgrtfv diffbit vs input for test DiffVainput_taqrifv
Entries 50000 Entries 50000
=+ [~ Mean 0.3478 = = Meanx 2507
- RMS 04876 | 300 Meany 3.696
a r RMSx 1441
1 B RMSy 2219
VDT VS Libm 25— _
104 - VDT VS Libm 40!
- 200
: E 301
- 15—
*H - 20(
10 - 10_— 0
! 101
I] L1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll %
o 10 20 30 40 50 60 0 Illll III[IIIII]I III[IIII o
Diffbit 0 500 100015002000250030003500400045005000
Input

1

Well known behaviour of the
“Quake 11l” inverse square root

Mantissa
Exponent
Sign

279 CERN openlab/Intel Workshop on

Numerical Computing 21

ACCURACY PLOTS

»two T |ets + X, 60 1b

Asin diffbit vs input for vctest DiffvainputAsin Cosf diffbit vs input for vctest Diffvainput_Cost
Entries 50000 Entries 50000
- B Mean x 0.002894 ks Mean x 14.47 M
g 60/ Meany 2403 E 30 i Meany 9.506
=) RMS x 0.5765 =) RMS x 2883
N RMSy 1.798 RMSy 289 p
50— VC VS Libm VC VS Libm
40
30

""r*'l-."".a.,'l : ,:J-mr-r
ki g T !

20}

10"
11

|
RIRTEY A
o b kb T b
-50004000300020001000 0 10002000300040005000
Input

o—l-lIlllllllllllllllllllll

-1 -08 -06 -04 -02 0 0.2

279 CERN openlab/Intel Workshop on

Numerical Computing 22

" CONCLUSIONS

A 7 —»two Tjets + X, 60 1b

A modern version of the Cephes library was implemented
VDT provides both scalar and array signatures
* Scalar: speedups of 2x-3x wrt Libm not unreasonable
* Array: factors of 10x achieved
Automatic usage of vector units via the compiler
* GCC allows high quality vectorisation
* Scalar functions usable 1n loops to exploit
autovectorisation: same speedup as for array signatures
* Simpler than intrinsics usage

Open Source (LGPL3)

Links:
https://svnweb.cern.ch/trac/vdt
http://svnweb.cern.ch/world/wsvn/vdt 23

279 CERN openlab/Intel Workshop on
Numerical Computing

24

SINGLE PRECISION VDT SVML & VC

*7 »two Tjets + X, 60 1b

Expf 6.76 1.9 1.33 2.07 1.38 X
Logf 13.1 2.48 1.70 1.90 1.62 2.31
Sinf 12.2 2.69 1.60 2.00 1.44 1.44
Cosf 10.1 2.45 1.89 1.71 1.82 1.09
Tanf 12.4 3.31 1.99 2.58 1.86 X
Asinf 8.93 2.00 2.37 0.71 2.19 2.05
Acosf 9.42 2.16 2.74 0.72 2.55 X
Atanf 6.01 1.92 2.00 0.70 1.79 2.09
Isqrtf 2.99 0.58 0.1* 0.42 0.1* 0.03

Time in nanoseconds per number

Nice scaling going from scalar to SSE and to AVX

* Obtained with 1/sqrt

29 CERN openlab/Intel Workshop on

Numerical Computing 25

SINGLE PRECISION

- MAX VDT | AVG VDT M AVG svml | MAX VC| AVG VC
| Acosf 0.4 X X

7 0.48 2 .
S 0.6 3 0.58 2 0.31
| Atanf [0.37 2 0.37 2 0.37
| Cosf [N 0.24 2 0.33 31 9.51
| Expf |G 3.36 2 0.45 X X
m 7 3.7 X X X X
2 0.26 1 0.03 1 0
6 0.24 2 0.33 32 9.51
6 0.52 3 0.52 X X
15 13.81 X X X X

24 CERN openlab/Intel Workshop on

Numerical Computing 26

QUAKE III' FAST ISQRT

A s two Tjets + X, 60 1b

Light effects (e.g. reflections) in the game needed
the calculation of several normalizations.

The important piece of the implementation 1s the
“magic constant” which yields to a first rough value
of the sqrt, then improved with Newton’s method
iterations.

/// Sqrt implmentation from Quake3
inline float fast_isqrtf_general(float x, const uint32_t ISQRT_ITERATIONS) {

constexpr float threehalfs = 1.5f;
const float x2 = x * 0.5F;
float v = Xx;
uint32_t i = sp2uint32(y);
i = Ox5f3759df - (1> 1);
y = uint322sp(i);
for (uint32_t j=0; j<ISQRT_ITERATIONS;++j)
y *= (threehalfs - (x2 *y *vy));

return y;

PADE’ APPROXIMATION

*7 —»two Tjets + X, 60 1b

Operational Definition:

The “best” approximation of a function by a rational
function of a given order

—> Often better approximation than a truncated Taylor series

Padé approximant of f(x) of order [m/n] is the function

(x) = > im0 4 _ G0+ @z + Wz? 4+ -t a2
L+ 5 ezt L+ b+ boa? + -+ + bya™

which agrees to the highest possible order to f(x)

f(0) = R(0)

f(0) = R(0)

(o) = R(0)
f(m+n)(0) — R(m+n)(0)

