
Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Floating-point control in the Intel C/C++ 
compiler and libraries  

or 
Why doesn’t my application always give 

the same answer? 

Martyn Corden 

Developer Products Division 

Software Solutions Group 

Intel Corporation 

September 2012 

9/24/2012 1 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 2 

Agenda 

–Overview 

–Floating-point (FP) Model 

– Comparisons with gcc 

–Performance impact 

–Runtime math libraries 

– Intel® Xeon Phi™ Coprocessors – what’s different 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 3 

Overview 

• The finite precision of floating-point operations leads to an 
inherent uncertainty in the results of a floating-point 
computation 
– Results may vary within this uncertainty 

 

• Nevertheless, may need reproducibility beyond this 
uncertainty 
– For reasons of Quality Assurance, e.g. when porting, optimizing, etc 

 

• The right compiler options can deliver consistent, closely 
reproducible results whilst preserving good performance 
– Across IA-32, Intel® 64 and other IEEE-compliant platforms 

– Across optimization levels 

– -fp-model is the recommended high level control for the Intel    
Compiler 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 4 

Floating Point (FP) Programming Objectives 

– Accuracy 

– Produce results that are “close” to the correct value 

– Measured in relative error, possibly in ulp 

– Reproducibility 

– Produce consistent results 

– From one run to the next 

– From one set of build options to another 

– From one compiler to another 

– From one platform to another 

– Performance  

– Produce the most efficient code possible 

These options usually conflict!  
Judicious use of compiler options lets you control the tradeoffs. 
Different compilers have different defaults.  

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 5 

Agenda 

–Overview 

–Floating Point (FP) Model 

–Performance impact 

–Runtime math libraries 

– Intel® Xeon Phi™ Coprocessors – what’s different 

 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 6 

Floating Point Semantics 

• The –fp-model (/fp:) switch lets you choose the 
floating point semantics at a coarse granularity.  It lets 
you specify the compiler rules for: 

 

– Value safety                        (main focus) 

– FP expression evaluation 

– FPU environment access 

– Precise FP exceptions  

– FP contractions                      (fused multiply-add) 
 

• Also pragmas in C99 standard 

– #pragma STDC FENV_ACCESS   etc 

• Old switches such as –mp  now deprecated 

– Less consistent and incomplete;  don’t use 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 7 

The –fp-model switch for icc 

• -fp-model 
–  fast [=1] allows value-unsafe  optimizations (default) 

–  fast=2  allows additional approximations 

–  precise  value-safe optimizations only 

–  source | double | extended   imply “precise” unless overridden 

                            see “FP Expression Evaluation” for more detail 

–  except  enable floating point exception semantics 

–  strict  precise + except + disable fma +                       
  don’t assume default floating-point environment 
 

• Replaces old switches  –mp, -fp-port, etc (don’t use!) 

 

•  -fp-model precise -fp-model source  
– recommended for ANSI/ IEEE standards compliance,     

C++ & Fortran 

– “source” is default with “precise” on Intel 64 Linux 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

GCC  option 

• -f[no-]fast-math     is high level option 

– It is off by default  (different from icc) 

– It is turned on by -Ofast 

• Components control similar features: 

– Value safety    (-funsafe-math-optimizations) 

– includes reassociation 

– Reproducibility of exceptions 

– Assumptions about floating-point environment 

– Assumptions about exceptional values 

• also sets abrupt/gradual underflow (FTZ) 

• For more detail,   check backup or 
http://gcc.gnu.org/wiki/FloatingPointMath  

8 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/
http://gcc.gnu.org/wiki/FloatingPointMath


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 9 

Value Safety 

• In SAFE mode, the compiler may not make any 
transformations that could affect the result, e.g. all the 
following are prohibited. 

 

 

 

 

 

 

 

 

 

• UNSAFE (fast) mode is the icc default 

• VERY UNSAFE mode enables riskier transformations 
– (-fp-model fast=2) 

 

x / x  1.0 x could be 0.0, ∞, or NaN 

x – y  - (y – x) If x equals y, x – y is +0.0 while – (y – x) is -

0.0 

x – x  0.0 x could be ∞ or NaN 

x * 0.0  0.0 x could be -0.0, ∞, or NaN 

x + 0.0  x x could be -0.0 

(x + y) + z  x + (y + z) General reassociation is not value safe 

(x == x)  true x could be NaN 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 10 

Value Safety 

Affected Optimizations include: 

 

• Reassociation 

• Flush-to-zero 

• Expression Evaluation, various mathematical 
simplifications 

• Approximate divide and sqrt 

• Math library approximations 

 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 11 

Reassociation 

– Addition & multiplication are “associative”   (& distributive) 
–   a+b+c = (a+b) + c = a + (b+c) 

–   a*b + a*c = a * (b+c) 
 

– These transformations are equivalent mathematically 
–  but not in finite precision arithmetic 

 

– Reassociation can be disabled in its entirety 
–  for standards conformance ( C left-to-right ) 

– Use   -fp-model precise   

– May carry a significant performance penalty 
(other optimizations also disabled) 

 

– Parentheses are respected only in value-safe mode! 
– -assume protect_parens    compromise (Fortran only) 

 

– See exercises for an example derived from a real app 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Example  (see exercises) 

“tiny” is intended to keep a[i]>0 

 

but… optimizer hoists constant          
expression (c+tiny) out of loop 

tiny gets “rounded away” wrt c 

 

icc –O1 reassoc.cpp; ./a.out 

a = 0   b = inf 

icc -fp-model precise reassoc.cpp;./a.out 

a = 1e-20   b = 1e+20 

 

g++ reassoc.cpp; ./a.out 

a = 1e-20   b = 1e+20 

g++ -O3 -ffast-math reassoc.cpp; ./a.out 

a = 0   b = inf 

 

 

 

 

 

 #include <iostream> 

 #define N 100 

 

 int main()   { 

   float a[N], b[N]; 

   float c = -1., tiny = 1.e-20F; 

 

   for (int i=0; i<N; i++) a[i]=1.0; 

 

   for (int i=0; i<N; i++)  { 

     a[i] = a[i] + c + tiny; 

     b[i] = 1/a[i]; 

   } 

   std::cout << "a = " << a[0] << 
"   b = " << b[0] << "\n"; 

 } 

12 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 13 

 Denormalized numbers and Flush-to-Zero (FTZ) 

• Denormals extend the (lower) range of IEEE floating-point 
values, at the cost of: 

– Reduced precision 

– Reduced performance    (can be 100 X for ops with denormals) 

 

• If your application creates but does not depend on denormal 
values, setting these to zero may improve performance        
(“abrupt underflow”, or “flush-to-zero”,) 

– Done in SSE or AVX hardware, so fast 

– Happens by default at –O1 or higher  (for icc, not gcc) 

– -no-ftz or –fp-model precise  will prevent 
– Must compile main with this switch to have an effect 

– -fp-model precise –ftz  to get “precise” without denormals 

– Not available for x87, denormals always generated 
– (unless trapped and set to zero in software – very slow) 

• For gcc, -ffast-math sets abrupt underflow  (FTZ) 
– But –O3  -ffast-math reverts to gradual underflow 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 14 

Reductions 

• Parallel implementations imply reassociation (partial sums) 
– Not value safe, but can give substantial performance advantage 

– -fp-model precise  

– disables vectorization of reductions 

– does not affect OpenMP* or MPI* reductions 

    These remain value-unsafe   (programmer’s responsibility) 

• New features in  

 Intel® Composer XE 2013 

float Sum(const float A[], int n ) 
{ 
    float sum=0; 
    for (int i=0; i<n; i++) 
        sum = sum + A[i]; 
    return sum; 
}  

 float Sum( const float A[], int n ) 
 { 
   int i, n4 = n-n%4;  
   float sum=0,sum1=0,sum2=0,sum3=0; 
   for (i=0; i<n4; i+=4) { 
       sum  = sum  + A[i]; 
       sum1 = sum1 + A[i+1]; 
       sum2 = sum2 + A[i+2]; 
       sum3 = sum3 + A[i+3]; 
   } 
   sum = sum + sum1 + sum2 + sum3; 
   for (; i<n; i++) sum = sum + A[i]; 
    return sum;    }  

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Reproducibility of Reductions in OpenMP* 

• Each thread has its own partial sum 

– Breakdown, & hence results, depend on number of threads 

– Partial sums are summed at end of loop 

– Order of partial sums is undefined (OpenMP standard) 

– First come, first served 

– Result may vary from run to run  (even for same # of threads) 

– For both gcc and icc 

– Can be more accurate than serial sum 

– For icc & ifort, option to define the order of partial sums  
 (tree algorithm) 

– Makes results reproducible from run to run 

– export KMP_DETERMINISTIC_REDUCTION=yes     (in 13.0) 

– May also help accuracy    

– Possible slight performance impact, depends on context 

– Requires static scheduling, fixed number of threads 

– Default for large numbers of threads 

 
15 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 16 

FP Expression Evaluation 

–  In the following expression, what if a, b, c, and d are mixed 
data types ( single and double for example) 

a = (b + c) + d 
 

Four possibilities for intermediate rounding, (corresponding to 
C99 FLT_EVAL_METHOD ) 

Indeterminate                                       (-fp-model fast) 

Use precision specified in source            (-fp-model source) 

Use double precision        (C/C++ only)  (-fp-model double) 

Use long double precision (C/C++ only)  (-fp-model extended) 

 

– Or platform-dependent default   (-fp-model precise) 

– Defaults to –fp-model source on Intel64 

– Recommended for most purposes 

– The expression evaluation method can significantly impact 
performance, accuracy, and portability 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 17 

The Floating Point Unit (FPU) Environment 

– FP Control Word Settings 
– Rounding mode (nearest, toward +∞, toward -∞, toward 0) 

– Exception masks,  status flags                                                 
(inexact, underflow, overflow, divide by zero, denormal, invalid) 

– Flush-to-zero (FTZ), Denormals-are-zero (DAZ) 

– x87 precision control (single, double, extended)   [don’t mess!] 

 

– Affected Optimizations, e.g. 

– Constant folding       (evaluation at compile time) 

– FP speculation 

– Partial redundancy elimination 

– Common subexpression elimination 

– Dead code elimination 

– Conditional transform, e.g. 

if (c) x = y; else x = z;  x = (c) ? y : z; 

 

 

 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 18 

FPU Environment Access 

– When access disabled (default): 
– compiler assumes default FPU environment 

– Round-to-nearest 

– All exceptions masked 

– No FTZ/DAZ 

– Compiler assumes program will NOT read status flags 

 

– If user might change the default FPU environment, inform 
compiler by setting FPU environment access mode!! 
– Access may only be enabled in value-safe modes, by: 

– -fp-model strict                     or 

– #pragma STDC FENV_ACCESS ON 

– Compiler treats control settings as unknown 

– Compiler preserves status flags 

– Some optimizations are disabled 

– If you forget this, you might get completely wrong results! 
– Eg from math functions, if you change default rounding mode 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 19 

Precise FP Exceptions 

– When Disabled (default): 
– Code may be reordered by optimization 

– FP exceptions might not occur in the “right” places 

 

– When enabled by  
-fp-model strict  
-fp-model except 
#pragma float_control(except, on) 
– The compiler must account for the possibility that any FP 

operation might throw an exception 

– Disables optimizations such as FP speculation  

– May only be enabled in value-safe modes 

– (more complicated for x87) 

– Does not unmask exceptions  

–  Must do that separately, e.g. 

-fp-trap=common    for C 

or functions calls such as  feenableexcept() 

-fpe0  or  ieee_set_halting_mode()   for Fortran 

 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 20 

Example 

Problem: F-P exception from (1./zero)  despite explicit protection 
– The invariant (1./zero) gets speculatively hoisted out of loop by 

optimizer, but the “?” alternative does not  

– exception occurs before the protection can kick in 

– NOTE: may not occur for AVX due to masked vector operations 

 

Solution:  Disable optimizations that lead to the premature 
exception 
– icc –fp-model precise –fp-model except     (or icc –fp-model strict) 

 disables all optimizations that could affect FP exception semantics 

– icc –fp-speculation safe 
disables just speculation where this could cause an exception 

– #pragma float_control   around the affected code block   (see doc) 

double  x.,  zero = 0.; 

   feenableexcept (FE_DIVBYZERO); 

   for( int i = 0; i < 20; i++ ) 

      x = zero ? (1./zero) : zero; 
      … 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 21 

Floating Point Contractions 

– affects the generation of FMA instructions on Intel® MIC 
architecture and Intel® AVX2 ( -xcore-avx2 ) 

– Enabled by default or -fma, disable with –no-fma 

– Disabled by –fp-model strict  or C/C++ #pragma 

– NOT disabled by –fp-model precise 

– -[no-]fma  switch overrides –fp-model setting 

– Intel compiler does NOT support 4-operand AMD*-specific fma 
instruction) 

 

– When enabled:   

– The compiler may generate FMA for combined multiply/add 

– Faster, more accurate calculations 

– Results may differ in last bit from separate multiply/add 

– When disabled: 

 -fp-model strict, #pragma fp_contract(off)  or –no-fma  

– The compiler must generate separate multiply/add with 
intermediate rounding 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 22 

Agenda 

– Overview 

– Floating Point (FP) Model 

– Performance impact 

– Runtime math libraries 

– Intel® Xeon Phi™ Coprocessors – what’s different 

 

Performance tests and ratings are measured using specific computer systems  and/or components and 
reflect the approximate performance of Intel products  as measured by those tests. Any difference in 
system hardware or software design  or configuration may affect actual performance. Buyers should 
consult other  sources of information to evaluate the performance of systems or components they are 
considering purchasing. For more information on performance tests and on the performance of Intel 
products, visit Intel  http://www.intel.com/performance/resources/limits.htm  

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 23 

Typical Performance Impact of  -fp-model source 
– Measured on SPECCPU2006fp benchmark suite: 

– -O2 or –O3 

– Geomean reduction due to  
–fp-model precise –fp-model source 
in range 12% - 15% 

 

– Intel Compiler XE 2011 ( 12.0 ) 

– Measured on Intel Xeon® 5650 system with dual, 6-core 
processors at 2.67Ghz, 24GB memory, 12MB cache, SLES* 
10 x64 SP2 

Use   -fp-model source (/fp:source) to improve floating point 
 reproducibility whilst limiting performance impact 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 24 

Agenda 

– Overview 

– Floating Point (FP) Model 

– Performance impact 

– Runtime math libraries 

– Intel® Xeon Phi™ Coprocessors – what’s different 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 25 

Math Library Functions 

– Different implementations may not have the same accuracy  

– On Intel 64: 

– libsvml for vectorized loops 

– libimf (libm) elsewhere 

– Processor-dependent code within libraries, selected at runtime 

– Inlining was important for Itanium, to get software pipelining,    
but less important for Intel 64 since can vectorize with libsvml 

– Used for some division and square root implementations 
 

– No official standard (yet) dictates accuracy or how results 
should be rounded       (except for division & sqrt) 
 

-fp-model precise helps generate consistent math calls 

–  eg within loops,  between kernel & prolog/epilog 

– Remove or reduce dependency on alignment 

– May prevent vectorization unless use –fast-transcendentals 

– When may differ from non-vectorized loop 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


 

 
Software & Services Group, Developer Products Division 

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 26 

New math library features  (12.x compiler) 
 

•  Select minimum precision  
– Currently for libsvml (vector); scalar libimf normally “high” 

  -fimf-precision=<high|medium|low> 

– Default is off (compiler chooses) 

– Typically high for scalar code, medium for vector code 

– “low”  typically halves the number of mantissa bits 
– Potential performance improvement 

– “high” ~0.55 ulp; “medium” < 4 ulp (typically 2) 

 

• -fimf-arch-consistency=<true | false> 
– Will produce consistent results on all microarchitectures or 

processors within the same architecture 

– Run-time performance may decrease 

– Default is false  (even with –fp-model precise !) 

 

9/24/2012 



Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 27 

Math Libraries – potential issues 

– Differences could potentially arise between: 

– Different compiler releases, due to algorithm 
improvements 
– Use –fimf-precision 

– another workaround, use later RTL with both compilers 

 

– Different platforms, due to different algorithms or 
different code paths at runtime 
– Libraries detect run-time processor internally 

– Independent of compiler switches 

– use -fimf-arch-consistency=true  

 

– Expected accuracy is maintained 
– 0.55 ulp for libimf 

–  < 4 ulp for libsvml  (default for vectorized loops) 

–  Adherence to an eventual standard for math functions would 
improve consistency but at a cost in performance. 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Intel® Math Kernel Library 
 
• Linear algebra, FFTs, sparse solvers, statistical, … 

– Highly optimized, vectorized 

– Threaded internally using OpenMP* 

– By default, repeated runs may not give identical results 

• Conditional BitWise Reproducibility  (new) 

– Repeated runs give identical results under certain conditions: 

– Same number of threads 

– OMP_SCHEDULE=static       (the default) 

– Same OS and architecture   (e.g. Intel 64) 

– Same microarchitecture, or specify a minimum microarchitecture 

– Consistent data alignment 

– Call  mkl_cbwr_set(MKL_CBWR_COMPATIBLE) 

– Or set environment variable MKL_CBWR_BRANCH="COMPATIBLE" 

– In Intel® Composer XE 2013  

9/24/2012 28 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Intel® Threading Building Blocks 
 
• A C++ template library for parallelism 

– Dynamic scheduling of user-defined tasks 

– Supports  parallel_reduce()  pattern 

– Repeated runs may not give identical results 

 

• “Community preview” feature for reproducibiity: 

– parallel_deterministic_reduce() 

– In Intel® Composer XE 2013 

– Repeated runs give identical results provided the user-
supplied body yields consistent results 

– Independent of the number of threads 

– Simple partitioner always breaks up work in the same way 

– But results may differ from a serial reduction 

– May be some impact on performance 

9/24/2012 29 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Agenda 

– Overview 

– Floating Point (FP) Model 

– Performance impact 

– Runtime math libraries 

– Intel® Xeon Phi™ Coprocessors – what’s different 

9/24/2012 30 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Floating-Point Behavior on the 
Intel® Xeon Phi™ Coprocessor 

• Floating-point exception flags are set by KCi vector instructions 

– the flags can be read 

– unmasking and trapping is not supported. 

– attempts to unmask will result in seg fault 

– -fpe0 (Fortran)  and  -fp-trap  (C)  are disabled 

– -fp-model except or strict  will yield (slow!) x87 code that supports 
unmasking and trapping of floating-point exceptions 

• Denormals are supported by KCi  (but slow, like host) 

– Needs –no-ftz or –fp-model precise   (like host) 

• 512 bit vector transcendental math functions available  (SVML) 
– Division and square root implementations still settling down 

– Both SVML and fast inlined divide and sqrt sequences available 

– Many options to select different implementations 

– See Differences in floating-point arithmetic between Intel(R) Xeon 
processors and the Intel Xeon Phi(TM) coprocessor for details and status 

 

31 

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Comparing Floating-Point Results between 
Intel® Xeon processors and 
the Intel® Xeon Phi™ Coprocessor 

• Different architectures – expect some differences 

– Different optimizations 

– Use of fused multiply-add (FMA) 

– Different implementations of math functions 

• To minimize differences (e.g. for debugging) 

– Build with –fp-model precise   (both architectures) 

– Build with –no-fma                 (Intel® MIC architecture) 

– Select high accuracy math functions  

–  (e.g. -fimf-precision=high;  default with –fp-model precise ) 

– Choose reproducible parallel reductions (slides 15 & 28) 

– Or run sequentially, if you have the patience… 

– Remember, the true uncertainty of your result is probably 
much greater! 

9/24/2012 32 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 33 

Further Information 

• Microsoft Visual C++* Floating-Point Optimization 
http://msdn2.microsoft.com/en-
us/library/aa289157(vs.71).aspx 

• The Intel® C++ and Fortran Compiler Documentation, 
      “Floating Point Operations” 

• “Consistency of Floating-Point Results using the Intel® 
Compiler”  http://software.intel.com/en-
us/articles/consistency-of-floating-point-results-using-the-
intel-compiler/  

• “Differences in Floating-Point Arithmetic between Intel® 
Xeon® Processors and the Intel® Xeon Phi™ Coprocessor” 
http://software.intel.com/sites/default/files/article/326703/flo
ating-point-differences-sept11.pdf  

• Goldberg, David: "What Every Computer Scientist Should 
Know About Floating-Point Arithmetic“ Computing Surveys, 
March 1991, pg. 203 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Legal Disclaimer 

9/24/2012 34 

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, 
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS 
DOCUMENT.  INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS 
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR 
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR 
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 
 
Performance tests and ratings are measured using specific computer systems and/or components 
and reflect the approximate performance of Intel products as measured by those tests. Any 
difference in system hardware or software design or configuration may affect actual performance. 
Buyers should consult other sources of information to evaluate the performance of systems or 
components they are considering purchasing. For more information on performance tests and on 
the performance of Intel products, reference www.intel.com/software/products. 
 
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino 
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386, 
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, 
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel 
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel 
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium 
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon 
Inside are trademarks of Intel Corporation in the U.S. and other countries. 
*Other names and brands may be claimed as the property of others.  
 
Copyright © 2012.  Intel Corporation. 
 

http://intel.com/software/products 

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/products
http://intel.com/software/products


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Optimization Notice 

35 

Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 

are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and 

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended 

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information 

regarding the specific instruction sets covered by this notice. 

 
Notice revision #20110804 

9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 36 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

37 

Quick Overview of Primary Switches 

Primary Switches Description 

/fp:keyword 

-fp-model keyword 

fast[=1|2], precise, source, double, extended, 
except, strict 
Controls floating point semantics 

/Qftz[-]             -[no-]ftz Flushes denormal results to Zero 

Some Other switches 

/Qfp-speculation keyword 
-fp-speculation keyword 

fast, safe, strict, off 
floating point speculation control 

/Qprec-div[-]      -[no-]prec-div Improves precision of floating point divides 

/Qprec-sqrt[-]     -[no-]prec-sqrt Improves precision of square root calculations 

/Qfma[-]            -[no-]fma Enable[Disable] use of fma instructions 

/Qfp-trap:…     -fp-trap=common Unmask floating point exceptions (C/C++ only) 

/fpe:0                 -fpe0 Unmask floating point exceptions  (Fortran only) 

/Qfp-port            -fp-port Round floating point results to user precision 

/Qprec                -mp1 More consistent comparisons & transcendentals 

/Op[-]     -mp [-nofltconsistency] Deprecated;   use /fp:source  etc  instead 

9/24/20
12 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Floating-point representations 
 
 

Parameter  Single  Double  Quad or Extended Precision 
(IEEE_X)*  

Format width in bits  32 64 128 

Sign width in bits  1 1 1 

mantissa  23 (24 implied) 52 (53 implied) 112 (113 implied) 

Exponent width in bits 8 11 15 

Max binary exponent +127 +1023  +16383  

Min binary exponent - 126  - 1022  -16382  

Exponent bias  +127  +1023  +16383  

Max value ~3.4 x 1038 ~1.8 x 10-308 ~1.2 x 10-4932 

Value (Min normalized) ~1.2 x 10-38 ~2.2 x 10-308 ~3.4 x 10-4932 

Value (Min denormalized) ~1.4 x 10-45 ~4.9 x 10-324 ~6.5 x 10-4966 

9/24/20
12 

38 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Special FP number representations  
 
• Single precision representations 

 

1 Sign bit 8 Exponent bits (1)+23  Significand bits 

zero  0 or 1 0 0 

denormalized 0 or 1 0 (0.)xxxxx… 

normalized 0 or 1 1-254 (1.)xxxxx… 

infinity 0 or 1 255 0 

Signalling NaN (SNaN) No meaning 255 (1.)0xxxx… 

Quiet Nan   (QNaN) No Meaning 255 (1.)1xxxx… 

9/24/20
12 

39 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Flush-To-Zero and Denormal FP Values 

• A normalized FP number has leading binary bit and an 
exponent in the range accommodated by number of bits in 
the exponent. 

• example: 

0.17186510  = 1/8 + 1/32 + 1/64 

   = 0.0010112  

normalized = 1.0112 x 2-3 

• Exponent is stored in 8 bits single or 11 bits double: mantissa 
in 23 bits single, 52 bits double 

• exponent biased by 127 (single precision) 

• leading sign bit – normalized “1.” bit implied, not physically 
stored  ( 1.011 stored as 011 ) 

0 01111100 01100000000000000000000 

40 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Flush-To-Zero and Denormal FP Values 

• What happens if the number is close to zero BUT exponent X 
in the 2-x won’t fit in 8 or 11 bits? 

• 2-128 for example in single precision 

• Cannot represent in a NORMALIZED fashion: 

• 1/2127 = 0.00…0012 (126 zeros after the binary point and a 
binary 1) 

• = 1.02 x 2-128 

• But -128 won’t fit in a 127 biased 8-bit exponent value! 

• Solution: DENORMAL representation 

• Exponent is -126 (all zeros), NO implied leading 1. 

• 0 00000000 10000000000000000000000 

41 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Flush-To-Zero and Denormal FP Values 

• “Underflow” is when a very small number is created that cannot 
be represented.  “gradual underflow” is when values are created 
that can be represented as denormal 

• Denormals do not include as many significant digits 

• Gradual loss of precision as denormal values get closer to zero 

 

• OK, fine, I like these denormal numbers, they carry some 
precision – why are denormals an issue? 

– UNFORTUNATELY denormals can cause 100x loss of 
performance 

• Solution: set any denormal to zero: FLUSH TO ZERO 

– Keeps performance up, tradeoff is some loss of precision and 
dynamic range 

42 9/24/2012 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 43 

–prec-div and –prec-sqrt Options 

• Both override the –fp-model settings 
• Default is –no-prec-sqrt, and somewhere between –prec-div 

and –no-prec-div 
 

[-no]-prec-div /Qprec-div[-] 
• Enables[disables] various divide optimizations 

– x / y  x * (1.0 / y) 

– Approximate divide and reciprocal 

 
[-no]-prec-sqrt    /Qprec-sqrt[-] 
• Enables[disables] approximate sqrt and reciprocal sqrt 

9/24
/201
2 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

-[no-]fast-transcendentals 

The compiler frequently optimizes calls of math 
library functions ( like exp, sinf ) in loops 

• Uses SVML ( short vector math library ) to vectorize loops 

• Uses the XMM direct call routines,  

 e.g. exp  ___libm_sse2_exp       (IA-32 only) 

– May sometimes use fast in-lined implementations 

 

This switch “-[no]fast-transcendental  can be used to 
override default behavior 

• Behavior related to settings of fp-model and other switches – 
see reference manual !! 

 

   

 
 

9/24
/201
2 

44 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

gcc options 

• -ffast-math implies 

–  -fno-math-errno 

–     -funsafe-math-optimizations 

–  -ffinite-math-only 

–  -fno-rounding-math 

–  -fno-signaling-nans 

–  -fcx-limited-range 

–   & sets __FAST_MATH__ 

 

• -funsafe-math-optimizations     implies 

–  -fno-signed-zeros 

–  -fassociative-math 

–  -fno-trapping-math 

–  -freciprocal-math 

–  & sets  abrupt underflow 

9/24/2012 45 

http://software.intel.com/en-us/articles/optimization-notice/


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Math Functions on the 
Intel® Xeon Phi™ Coprocessor 

• Faster, more approximate versions of math functions can still 
be obtained with   –fp-model precise by adding 

       -fast-transcendentals –no-prec-div –no-prec-sqrt 

– See Differences in floating-point arithmetic between Intel(R) Xeon 
processors and the Intel Xeon Phi(TM) coprocessor for details and status 

 

• Switches for finer control of math function accuracy: 

– -fimf-precision=<high|medium|low> [:func1,func2,…] 

– -fimf-max-error 

– -fimf-accuracy-bits 

– -fimf-absolute-error 

– -fimf-domain-exclusion 

46 

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf


Software & Services Group 

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Math Functions on the 
Intel® Xeon Phi™ Coprocessor 

• Math functions have special branches and code to handle 
“exceptional” arguments 

– Faster versions possible if this can be skipped 

• -fimf-domain-exclusion= <value>; the bits of <value> indicate 
domains for which the compiler need not generate special code 
– 1 extreme values   (close to singularities or infinities; denormals) 

– 2 NaNs 

– 4 infinities 

– 8 denormals 

– 16 zeros 

– E.g.   -fimf-domain-exclusion=31   excludes all of these for all functions 

• Can be restricted to specific functions, e.g. 

– -fimf-domain-exclusion=15:/sqrt,sqrtf     gives fast, inlined 
versions of single & double precision square root 

• -fp-model-fast=2  implies –fimf-domain-exclusion=15 
 

 
47 

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf

