From CRLibm to Metalibm : assisting the production of high-performance proven floating-point code

Florent de Dinechin Arénaire/AriC project

My research group

The Arénaire project (now AriC) @ École Normale Supérieure de Lyon : Computer Arithmetic at large

- Hardware and software
- From addition to linear algebra
- Fixed point, floating-point, multiple-precision, finite fields,
- Pervasive concern of performance, numerical quality and validation

Outline

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

Introduction: performance versus accuracy

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

Bottom line of this talk

Common wisdom

The more accurate you compute, the more expensive it gets

Bottom line of this talk

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

- We (hopefully) notice it when our computation is not accurate enough.
- But do we notice it when it is too accurate for our needs?

Bottom line of this talk

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

- We (hopefully) notice it when our computation is not accurate enough.
- But do we notice it when it is too accurate for our needs?

Reconciling performance and accuracy?

Or, regain performance by computing just right?

Double precision spoils us

The standard binary64 format (formerly known as double-precision) provides roughly 16 decimal digits.

Why should anybody need such accuracy?

Count the digits in the following

- Definition of the second: the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
- Definition of the metre: the distance travelled by light in vacuum in 1/299,792,458 of a second.
- Most accurate measurement ever (another atomic frequency) to 14 decimal places
- Most accurate measurement of the Planck constant to date : to 7 decimal places
- The gravitation constant G is known to 3 decimal places only

• This PC computes 10⁹ operations per second (1 gigaflops)

• This PC computes 10⁹ operations per second (1 gigaflops)

An allegory due to Kulisch

- print the numbers in 100 lines of 5 columns double-sided : 1000 numbers/sheet
- 1000 sheets \approx a heap of 10 cm
- 10^9 flops \approx heap height speed of 100m/s, or 360km/h
- A teraflops (10^{12} op/s) prints to the moon in one second
- Current top 500 computers reach the petaflop (10^{15} op/s)

• This PC computes 10⁹ operations per second (1 gigaflops)

An allegory due to Kulisch

- ullet print the numbers in 100 lines of 5 columns double-sided : 1000 numbers/sheet
- 1000 sheets \approx a heap of 10 cm
- 10^9 flops \approx heap height speed of 100 m/s, or 360 km/h
- \bullet A teraflops (10¹² op/s) prints to the moon in one second
- Current top 500 computers reach the petaflop (10^{15} op/s)
- each operation may involve a relative error of 10⁻¹⁶, and they accumulate.

• This PC computes 10⁹ operations per second (1 gigaflops)

An allegory due to Kulisch

- \bullet print the numbers in 100 lines of 5 columns double-sided : $1000 \ numbers/sheet$
- 1000 sheets \approx a heap of 10 cm
- 10^9 flops \approx heap height speed of 100m/s, or 360km/h
- \bullet A teraflops (10¹² op/s) prints to the moon in one second
- \bullet Current top 500 computers reach the petaflop (10¹⁵ op/s)
- each operation may involve a relative error of 10⁻¹⁶, and they accumulate.

Doesn't this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

... which was :

Mastering accuracy for performance

When implementing a "computing core"

• A goal : never compute more accurately than needed

... which was :

Mastering accuracy for performance

When implementing a "computing core"

- A goal : never compute more accurately than needed
- Two sub-goals
 - Know what accuracy you need

... which was:

Mastering accuracy for performance

When implementing a "computing core"

- A goal : never compute more accurately than needed
- Two sub-goals
 - Know what accuracy you need
 - Know how accurate you compute

... which was:

Mastering accuracy for performance

When implementing a "computing core"

- A goal : never compute more accurately than needed
- Two sub-goals
 - Know what accuracy you need
 - Know how accurate you compute

"Computing cores" considered so far : elementary functions, sums of products, linear algebra, Euclidean lattices algorithms.

Elementary function evaluation

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

Rule of the game : use only +, -, \times (and maybe / and $\sqrt{}$ but they are expensive).

Rule of the game : use only +, -, \times

(and maybe / and $\sqrt{}$ but they are expensive).

- Polynomial approximation works on a small interval
 - for a fixed approximation error, d° grows with size of the interval
 - typically $x < 2^{-8} \Longrightarrow d^{\circ} \approx 3...10$ ensures $\overline{\varepsilon}_{approx} < 2^{-55}$

Rule of the game : use only +, -, \times

(and maybe / and $\sqrt{}$ but they are expensive).

- Polynomial approximation works on a small interval
 - for a fixed approximation error, d° grows with size of the interval
 - typically $x < 2^{-8} \Longrightarrow d^{\circ} \approx 3...10$ ensures $\overline{\varepsilon}_{approx} < 2^{-55}$
- Argument reduction: using mathematical identities, transform large arguments in small ones

Rule of the game : use only $+, -, \times$

(and maybe / and $\sqrt{}$ but they are expensive).

- Polynomial approximation works on a small interval
 - for a fixed approximation error, d° grows with size of the interval
 - typically $x < 2^{-8} \Longrightarrow d^{\circ} \approx 3...10$ ensures $\overline{\varepsilon}_{\mathsf{approx}} < 2^{-55}$
- Argument reduction: using mathematical identities, transform large arguments in small ones

Simplistic example : an exponential

- identity : $e^{a+b} = e^a \times e^b$
- split x = a + b
 - a: k leading bits of x
 - b: lower bits of x b << 1
- tabulate all the e^a (2^k entries)
- use a Taylor polynomial for e^b

Know how accurate you compute

- Approximation errors
 - example : approximate a function f with a polynomial p : $||p f||_{\infty}$?

• in general : approximate an object by another one

Know how accurate you compute

- Approximation errors
 - example : approximate a function f with a polynomial p : $||p f||_{\infty}$?

- in general : approximate an object by another one
- Rounding errors
 - each individual error well specified by IEEE-754
 - but error accumulation difficult to manage

Know how accurate you compute

- Approximation errors
 - example : approximate a function f with a polynomial p : $||p f||_{\infty}$?

- in general : approximate an object by another one
- Rounding errors
 - each individual error well specified by IEEE-754
 - but error accumulation difficult to manage
- In physics : time discretization errors, etc

The most important sentence of this talk

An error is a difference (absolute or relative) between two values, one being a reference for the other.

Examples:

- error of the FP addition is with reference of the real sum (easy)
- error of the polynomial is with reference to the function (easy)

The most important sentence of this talk

An error is a difference (absolute or relative) between two values, one being a reference for the other.

Examples:

- error of the FP addition is with reference of the real sum (easy)
- error of the polynomial is with reference to the function (easy)
- error of one FP addition within the polynomial evaluation?
 (difficult because we have no direct reference in the function)

The most important sentence of this talk

An error is a difference (absolute or relative) between two values, one being a reference for the other.

Examples:

- error of the FP addition is with reference of the real sum (easy)
- error of the polynomial is with reference to the function (easy)
- error of one FP addition within the polynomial evaluation?
 (difficult because we have no direct reference in the function)
- yesterday : accuracy of the summation algorithms?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values, one being a reference for the other.

Examples:

- error of the FP addition is with reference of the real sum (easy)
- error of the polynomial is with reference to the function (easy)
- error of one FP addition within the polynomial evaluation?
 (difficult because we have no direct reference in the function)
- yesterday : accuracy of the summation algorithms?

Never say "the error of this term is ...":

it doesn't mean anything without the reference.

If you are not able to define the reference value, you will not be able to know how accurate you compute

Initial motivation

Correctly rounded elementary functions

- IEEE-754 floating-point single or double-precision
- Elementary functions: sin, cos, exp, log, implemented in the "standard mathematical library" (libm)

Initial motivation

Correctly rounded elementary functions

- IEEE-754 floating-point single or double-precision
- Elementary functions: sin, cos, exp, log, implemented in the "standard mathematical library" (libm)
- Correctly rounded: As perfect as can be, considering the finite nature of floating-point arithmetic
 - same standard of quality as $+, \times, /, \sqrt{}$

Initial motivation

Correctly rounded elementary functions

- IEEE-754 floating-point single or double-precision
- Elementary functions: sin, cos, exp, log, implemented in the "standard mathematical library" (libm)
- Correctly rounded: As perfect as can be, considering the finite nature of floating-point arithmetic
 - same standard of quality as $+, \times, /, \sqrt{}$
- Now recommended by the IEEE754-2008 standard, but long considered too expensive

because of the Table Maker's Dilemma

• Finite-precision algorithm for evaluating f(x)

- Finite-precision algorithm for evaluating f(x)
- Approximation + rounding errors \longrightarrow overall error bound $\overline{\varepsilon}$.

- Finite-precision algorithm for evaluating f(x)
- Approximation + rounding errors \longrightarrow overall error bound $\overline{\varepsilon}$.
- What we compute : y such that $f(x) \in [y \overline{\varepsilon}, y + \overline{\varepsilon}]$

- Finite-precision algorithm for evaluating f(x)
- Approximation + rounding errors \longrightarrow overall error bound $\overline{\varepsilon}$.
- What we compute : y such that $f(x) \in [y \overline{\varepsilon}, y + \overline{\varepsilon}]$

The Table Maker's Dilemma

- Finite-precision algorithm for evaluating f(x)
- Approximation + rounding errors \longrightarrow overall error bound $\overline{\varepsilon}$.
- What we compute : y such that $f(x) \in [y \overline{\varepsilon}, y + \overline{\varepsilon}]$

Dilemma if this interval contains a midpoint between two FP numbers

The Table Maker's Dilemma

- Finite-precision algorithm for evaluating f(x)
- Approximation + rounding errors \longrightarrow overall error bound $\overline{\varepsilon}$.
- What we compute : y such that $f(x) \in [y \overline{\varepsilon}, y + \overline{\varepsilon}]$

Dilemma if this interval contains a midpoint between two FP numbers

		Loc	ARIT	<i>НМІСА</i> .		
		Tabula invent	ioni Loga	rithmoram inf	Groiens.	
	II	1 0,00	1	1 IcccoI	0,00000,43420,2	-
	2	0,30102,99976,6	1	1000002	0,00000,86858,0	
	13	0,47712,12547,2	i	100003	0,00001,30286,4	1
	14	0,60205,99903,3	1	Iscood	0,00001,73714,3	1
	15	0,69897,00043,4	1	Iconof	0,00002,17141,8 F	1
	6	0,77815,12503,8 4	1	100006	0,000002,60568,9	1
	17	0,84509,80400,1	1	Iccco7	0,00003,03995,5	1
	18	0,90308,99869,9	1	100008	0,00003,47421,7	1
	9	0,95424,25094,4	1	100009	0,00003,90847,4	1
	11	0,04139,26851,6	1	Iccocci	0,00000,04342,9	1
	12	0,07918,12460,5	1	1000002	0,00000,08685,9	1
	13	0,11394,33523,1	1	1000003	0,00000,13028,8	i
	14	0,14612,80356,8	1	1000004	0,000000,17371,7	1
	15	0,17609,12590,6 B	1	1000005	0,000000,21714,7 G	1
	16	0,20411,99826,6	l	1000006	0,00000,26057,6	1
	17	0,23044,89213,8		1000007	0,00000,30400,5	1
		0,25527,25051,0		10000000	0,00000,34743,4	1
	19		1	i ´	0,00000,39086,3	1
	Iof	0,00432,13737,8	1	IccccccI	0,00000,00434,3	1
	102	0,00860,01717,6	1	10000002	0,00000,00868,6	1
	103	0,01283,72247,1		10000003	0,00000,01302,9	1
	104	0,01703,33393,0		Icoccoca	0,00000,01737,2	1
	105	0,02118,92990,7 €	l	10000005	0,00000,02171,5 H	1
	106	0,02530,58652,6	1	10000006	0,00000,02505,8	
	107	0,02938,37776,9	l	10000007	0,00000,03040,1	1
	108	0,03342,37554,9	l	IcoccccS	0,00000,03474,4	1
	109	0,03743,64979,4		200000009	0,00000,03908,6	1
	Icol	0,00043,40774,8		1000000001	0,00000,00043,4	
	1002	0,00086,77215,3		100000002	0,09300,00086,9	ı
	1003 1004	0,00130,09330,2		100000003	0,00000,00130,3	1
	1005	0,00216,60617,6 D	1	1000000005	0,02000,00173,7 0,00000,00217,1 I	l
	Tool	0,00259,79807,2		Indecessor	0,00000,00260,6	ı
	1007	0,00302,94705,5		100000007	0,00000,00304,0	1
	1008	0,00346,05321,1		1600000008	0,00000,00347,4	l
	Ioog	0,00389,11662,4		100000000	0,00000,00390,9	1
	-					
-	Iccol	0,00004,34272,8		Iccccccct	0,00000,00004,3	
	10002	0,00008,68502,1		1000000002	0,00000,00008,7	
	10003	e,00013,02688,1		1000000003	0,00000,00013,0	
-	10004	0,00017,36830,6		1000000004	0,00000,00017,4	
	10005	0,00021,70029,7 E		Iccoccccy	0,00000,00021,7 K	
	10006	0,00026,04985,5		Ineconococ	0,00000,00026,1	
	10007	0,00030,33997,8		1000000007	0,000000,00030,4	
	X0008	0,00034,72966,9		Iccocccos Iccocccos	0,00000,00034,7	
	10009	0,00039,06892,5		10000000000	0,00000,00039,1	

LOGARITHMICA.

Tabula inventioni Lorarithmorum infervient. 0,00000,43429,2

0,30102,99975,6 100002 0,00000,86858,0 0,47712,12547,2 100001 0,00001,30286,4 0,60205,99903,3 Iccord 0,00001,73714.3 0,69897,00043,4 Icomog 0,00002,17141,8 F 0,77815,12503,8 4 Innonf 0,000002,60568,0 0,84509,80400,1 Iccco? 0,000003,03905,5 0,90308,99869,9 100008 0,00003,47421,7 9 0,95424,25094,4 Iccocce 0,00003,90847,4 0,04139,26851,6 Iccocci 0,990000,04842.0 12 0,07918,12460,5 1000002 0,00000,08684.0 13 14 15 16 0,11394,33523,1 1000003 0,00000,12028.8 0,14612,80356,8 1000004 0,00000,17171,7 0,17609,12590,6 B Iccocco C 0,000000,21714,7 G 0,00000,26017,6 0.20411.00826.6 1000006 17 0,21044,89211,8 0,00000,30400,5 1000007 0,00000,34743,4 0,25527,25051,0 I000008 0,27875,36009,5 10000000 19 0,900000,39086,3 Iot 0,00432,13737,8 IcocccoI 0,00000,00434,3 102 0,00860,01717,6 10000002 0,00000,00868,6 Int 0.01281,72247.T Icccccc2 0,00000,01302,0 0.00000,01737,2 104 0.01703.22303.0 Icoccoca 0,02118,92990,7 C Iccoccccg 0,00000,02171,5 H 105 0,02530,58652,6 100000006 0,00000,02505,8 106 197 0,02938,37776,9 10000007 0,00000,03040,1 Io8 0,03342,37554.9 IcoccccS 0,00000,01474.4 109 0,03742,64979,4 20000000 0,00000,03008,6 0.00041.40774.8 0,00000,00043,4 Icol 0,00086,77215.3 1002 100000002 0,09300,00086,9 0,00120,00220,2 \$0000000E 0,00000,00130,3 Ioo Z 0,00173,37128,1 100000004 X004 0,02000,00178.7 1005 0,00216,60617,6 D Iceccocos 0.00960.00217.I F 0,00259,79807,2 1000000005 1006 0,00000,00260.6 0,00302,94705,5 100000007 1007 0,000000,00104.6 0,00346,05321,1 100000008 1008 0,00000,00347.4 Loop 0,00389,11662,4 1000000009 0,00000,00000,0 Iccol 0.00004.34272.8 TOGOGGGGG I 0,00000,000004.2 10002 0,00008,68502,1 I000000002 0,00000,00008,7 e,00011,02688,1 1000000001 0,00000,00013,0 0,00017,16810,6 1000000004 0,00000,00017,4 0,00021,70029,7 E Iccocccc 0,00000,00021,7 K 0,00026,04985,5 Ineconocod 0,00000,00026,1 0,00030,35997,8 1000000007 0,000000,00000,4

Iccocccoo8 0,000000,00034,7 T0000000009 0,00000,00039,T I want 12 significant digits

0,00034,72966,9

10009 0,00039,06892,5

LOGARITHMICA.

Tabula inventioni Logarithmorum inscroiens.						
I T	1 0,00		Logool	0,00000,43420,2		
1 2	0,30102,99976,6	1	100002	0,00000,86858,0		
3	0,47712,12547,2	i	100001	0,00001,30286,4		
14	0,60205,99903,3	1	Iscood	0,00001,73714,3		
1 6	0,69897,00043,4	1	Iconor	0,00001,17141,8 F		
6	0,77815,12503,8 4	1	100006	0,00002,60568,9		
17	0,84509,80400,1	1	Iccco7	0,00003,03995,5		
1 8	0,90308,99869,9	1	100008	0,00003,47421,7		
9	0,95424,25094,4	1	100009	0,00003,90847,4		
	0,04139,26851,6	1	Tococci	0,00000,04342,9		
12	0,07918,12460,5	1	1000002	0,00000,08685,0		
173	0,11394,33523,1	1	1000003	0,00000,13028,8		
14	0,14612,80356,8	1	1000004	0,00000,17371,7		
15	0,17609,12590,6 B	Į	1000005	0,00000,21714,7 G		
16	0,20411,99826,6	1	1000006	0,00000,26057,6		
17	0,23044,89213,8		1000007	0,00000,30400,5		
18	0,25527,25051,0	1	1000008	0,00000,34743,4		
19	0,27875,36009,5	l	1000000	0,00000,39086,3		
1			1			
Iof	0,00432,13737,8	1	IccccccI	0,00000,00434,3		
102	0,00860,01717,6	1	10000002	0,000000,00868,6		
103	0,01283,72247,1		10000003	0,00000,01302,9		
104	0,01703,33393,0		Icoccoca	0,00000,01737,2		
105	0,02118,92990,7 €	l	Icoccocg	0,00000,02171,5 H		
106	0,02530,58652,6	I	100000006	0,00000,02505,8		
107	0,02938,37776,9	ĺ	10000007	0,00000,03040,1		
108	0,03342,37554,9		100000008	0,00000,03474,4		
109	0,03742,64979,4		\$00000009	0,00000,03908,6		
Icol	0,00043,40774,\$		IOCCOCCCI	0,00000,00041,4		
1002	0,00086,77215.3	1	100000002	0,09300,00086,9		
1001	0,00130,09330,2		\$00000000	0,000000,00120,2		
1004	0,00173,37128,1		100000004	0,02000,00173,7		
1007	0,00216,60617,6 D	1	1000000005	0,00000,00217,I I		
1006	0,00259,79807,2		1000000000	0,00000,00260,6		
1007	0,00302,94705,5		1000000007	0,000000,00304,0		
1008	0,00346,05321,1		100000008	0,00000,00347,4		
1009	0,00389,11662,4		1000000009	0,00000,00390,9		
IccoI	0,00004,34272,8		1000000001	0,00000,00004,3		

Incomment 0,00000,00008,7

Interconnect 0,00000,00017.4

Ineccenced 0,00000,00026,I

1000000007 0,00000,00030,4

1000000008 0,00000,00034,7 1000000009 0,00000,00039,1

I00000000 0,00000,00021,7 K

- I want 12 significant digits
 - I have an approximation scheme that provides 14 digits

0,00008,68502,1

0,00017,16810,6

0,00026,04985,5

10007 0,00030,35997,8

10008 0,00034,72966,9

10009 0,00039,06892,5

0,00021,70029,7 E

LOGARITHMICA.

	LU	SAKI	HOILA	•
	Tabula invent	ioni Loga	rithmoram inj	Groiens.
1 1	1 0,00	1	L IcccoI	0,00000,43420,2
2	0,30102,99976,6	1	1000001	0,00000,86858,0
13	0,47712,12547,2	i	100003	0,00001,30286,4
14	0,60205,99903,3	1	Iccood	0,00001,73714,3
15	0,69897,00043,4	1	Iconof	0,00001,17141,8 F
6	0,77815,12503,8 1	1	100006	0,000002,60568,9
17	0,84509,80400,1	1	Iccco7	0,000003,03905,5
18	0,90308,99869,9	1	100008	0,00003,47421,7
9	0,95424,25094,4	1	100009	0,00003,90847,4
11	0,04139,26851,6	1	TococcT	0,00000,04342,9
12	0,07918,12460,5	1	1000002	0,00000,08685,9
13	0,11394,33523,1	1	1000003	0,00000,13028,8
14	0,14612,80356,8	1	1000004	0,00000,17371,7
15	0,17609,12590,6 B	1	Iccocc	0,000000,21714,7 G
16	0,20411,99826,6	i	1000006	0,00000,26057,6
17	0,23044,89213,8		1000007	0,00000,30400,5
18	0,25527,25051,0	1	1000008	0,00000,34743,4
1 19	0,27875,36009,5	1	10000009	0,000000,39086,3
Tot	0,00432,13737,8	1	IccccccI	0,00000,00434,3
102	0,00860,01717,6	1	10000002	0,00000,00868,6
103	0,01283,72247,1	1	10000003	0,00000,01302,9
104	0,01703,33393,0	l	Icoccoca	0,00000,01737,2
105	0,02118,92990,7 €	ı	Icoccocs	0,00000,02171,5 H
106	0,02530,58652,6	1	100000006	0,00000,02505,8
107	0,02938,37776,9	ı	10000007	0,00000,03040,1
108	0,03342,37554,9	l	100000008	0,00000,03474,4
109	0,03743,64979,4	1	20000009	0,00000,03908,6
Icol	0,00043,40774,8	l	1000000001	0,00000,00043,4
1002	0,00086,77215,3	1	100000002	0,09300,00086,9
1003	0,00130,09330,2	1	100000003	0,00000,00130,3
1004	0,00173,37128,1	1	100000004	0,02000,00173,7
1005	0,00216,60617,6 D	l	1000000005	0,00000,00217,1 [
1006	0,00259,79807,2	l	1000000000	0,00000,00260,6
1007	0,00302,94705,5	i	1000000007	0,00000,00304,0
1008	0,00346,05321,1	ł	100000008	0,00000,00347,4
1009	0,00389,11662,4		1000000009	0,00000,00390,9
Iccol	0,00004,34272,8		IccocccccI	0,00000,00004,3
10002	0,00008,68502,1		1000000002	0,00000,00008,7
10003	e,00013,02688,1		1000000003	0,00000,00013,0
10004	0,00017,36830,6		1000000004	0,00000,00017,4
10005	0,00011,70029,7 E		Iccoccco	0,000000,00021,7 K
10006	0,00026,04985,5		Ineconocod	0,00000,00026,1
10007	0,00030,33997,8		1000000007	0,000000,00030,4
X0008	0,00034,72966,9		Icqccccco8	0,00000,00034,7
10009	0,00039,06892,5		10000000009	0,00000,00039,1

- I want 12 significant digits
 - I have an approximation scheme that provides 14 digits
 - or,

$$y = \log(x) \pm 10^{-14}$$

LOGARITHMICA.

	Tabula invent	ioni Loga	rithmorum inf	iroieu.
l I	1 0,00	1	LOSSOI	0,00000,43420,2
1 2	0,30102,99976,6	1	100002	0,00000,86858,0
3	0,47712,12547,2	i	100001	0,00001,30286,4
14	0,60205,99903,3	1	Iscood	0,00001,73714,3
17	0,69897,00043,4	1	Tecops	0,00002,17141,8 F
16	0,77815,12503,8 1	1	100006	0,000002,60568,9
17	0,84509,80400,1	1	100007	0,000003,03905,5
1 8	0,90308,99869,9	1	100008	0,00003,47421,7
1.	0,95424,25094,4	1	I000009	0,00003,90847,4
1'	- 207 (10 7 7 10 1	1		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
111	0,04139,26851,6	1	TococoT	0,00000,04242,0
12	0,07918,12460,5	1	1000002	0,000000,08685,0
13	0,11394,33523,1	1	1000003	0,00000,12028,8
14	0,14612,80356,8	1	1000004	0,00000,17371,7
15	0,17609,12590,6 B	Į.	1000005	0,00000,21714,7 G
16	0,20411,99826,6	1	1000006	0,00000,26057,6
17	0,23044,89213,8	1	1000007	0,00000,30400,5
18	0,25527,25051,0	ı	1000008	0,00000,34743,4
19	0,27875,36009,5	i i	10000000	0,00000,39086,3
1			i	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Tof	0,00432,13737,8	1	IccocccoI	0,00000,00434,3
102	0,00860,01717,6	1	10000002	0,00000,00868,6
103	0,01283,72247,1	1	10000003	0,00000,01302,0
104	0,01703,33393,0	1	Icoccoca	0,00000,01737.2
105	0,02118,92990,7 €	ı	100000005	0,00000,02171,5 H
106	0,02530,58652,6	1	100000006	0,00000,02505,8
107	0,02938,37776,9	l	10000007	0,00000,03040,1
108	0,03342,37554.9	1	100000008	0,00000,03474,4
109	0,03743,64979,4	t .	200000009	0,00000,03908,6
1		i .	1	,
Icol	0,00043,40774,8	1	IOCCCCCCI	0,000000,00043,4
1002	0,00086,77215,3	1	100000002	0,09300,00086,9
1001	0,00130,09330,2	l	1000000003	0,00000,00130,3
1004	0,00173,37128,1	1	100000004	0,02000,00173,7
1005	0,00216,60617,6 D	1	1000000005	0,00000,00217,I I
1006	0,00259,79807,2	l	1000000005	0,00000,00260,6
1007	0,00302,94705,5	1	1000000007	0,000000,00304,0
1008	0,00346,05321,1	i	100000008	0,00000,00347,4
1009	0,00389,11662,4	1	1000000009	0,00000,00390,9
1 1		1	1	
Iccol	0,00004,34272,8		Iccccccci	0,00000,00004,3
10002	0,00008,68502,1		1000000002	0,00000,00008,7
10003	e,00013,02688,1		1000000003	0,00000,00013,0
10004	0,00017,36830,6		1000000004	0,00000,00017,4
10005	0,00011,70029,7 E		Loccooccoj	0,00000,00021,7 K
Intof	0,00026,04985,5		Ineconocod	0,00000,00026,1
10007	0,00030,33997,8		1000000007	0,00000,00030,4
X0008	0,00034,72966,9		Iccoccco6	0,00000,00034,7
10009	0,00039,06892,5		10000000009	0,00000,00039,1
				,

- I want 12 significant digits
 - I have an approximation scheme that provides 14 digits
 - or,

$$y = \log(x) \pm 10^{-14}$$

• "Usually" that's enough to round

$$y = x, xxxxxxxxxx17 \pm 10^{-14}$$

$$y = x$$
, $xxxxxxxxxxxx83 \pm 10^{-14}$

LOGARITHMICA.

Labula invention.	inventioni Logarithmorum inservient.			
1 0,00	l recent	0,00000,43429,2		
0,30102,99976,6	100002	0,00000,86858,0		
034//12312/4/32	100003	0,00001,30286,4		

-				
r	0,00	1	Icccol	0,00000,43429,2
2	0,30102,99976,6	Į	100002	0,00000,86858,0
3	0,47712,12547,2	1	100003	0,00001,30286,4
4	0,60205,99903,3	1	Iscoop	0,00001,73714,3
5	0,69897,00043,4	1	Icons	0,00001,17141,8 F
6	0,77815,12503,8 A	1	100006	0,00002,60568,9
7	0,84509,80400,1	1	100007	0,00003,03995,5
8	0,90308,99869,9	1	100008	0,00003,47421,7
9	0,95424,25094,4	l	100009	0,00003,90847,4
11	0,04139,26851,6	1	Iccocci	0,00000,04342,9
12	0,07918,12460,5	1	1000002	0,00000,08685,9
13	0,11394,33523,1	1	1000003	0,000000,13028,8
14	0,14612,80356,8	1	1000004	0,00000,17371,7
15	0,17609,12590,6 B	1	Iccocco	0,000000,21714,7 G
16	0,20411,99826,6	İ	1000005	0,00000,26057,6
17	0,23044,89213,8		1000007	0,00000,30400,5
18	0,25527,25051,0		1000008	0,00000,34743,4
19	0,27875,3600955		1000009	0,900000,39086,3
TOT	0,00432,13737,8	l	IcocccoI	0,00000,00434,3
102	0,00860,01717,6	1	10000002	0,00000,00868,6
103	0,01283,72247,1		10000003	0,00000,01302,9
104	0,01703,33393,0		Icoccoca	0,00000,01737,2
105	0,02118,92990,7 €	1	Incompos	0,00000,02171,5 H
106	0,02530,58652,6	1	100000006	0,00000,02505,8
107	0,02938,37776,9	i	10000007	0,00000,03040,1
108	0,03342,37554,9	1	IcoccccS	0,00000,03474,4
109	0,03743,64979,4		\$00000009	0,00000,03908,6
Icol	0,00043,40774,\$		IOOGGOOGGI	0,00000,00043,4
1002	0,00086,77215,3	1	100000002	0,09300,00086,9
1001	0,00130,09330,2		\$00000000	0,00000,00130,3
1004	0,00173,37128,1		100000004	0,02000,00173,7
1007	0,00216,60617,6 D	1	1000000005	0,00000,00217,I I
1006	0,00259,79807,2		1000000000	0,00000,00260,6
1007	0,00302,94705,5		100000007	0,00000,00304,0
1008	0,00346,05321,1		\$00000008	0,00000,00347,4
1009	0,00389,11662,4		1000000009	0,00000,00390,9
Icool	0,00004,34272,8		IccocccccI	0,00000,00004,3
10002	0,00008,68502,1		I000000002	0,00000,00008,7
Icos I	0,00013,02688,1		1000000003	0,00000,00013,0
10004	0,00017,36830,6		1000000004	0,00000,00017,4
10005	0,00011,70029,7 E		Iccoccccy	0,00000,00021,7 K
Into6	0,00026,04985,5		Iseccescos	0,00000,00026,1
10007	0,00030,35997,8		1000000007	0,00000,00030,4
X0008	0,00034,72966,9		Iccoccco6	0,00000,00034,7
10009	0,00039,06892,5		1000000000	0,00000,00039,1

- I want 12 significant digits
 - I have an approximation scheme that provides 14 digits
 - or,

$$y = \log(x) \pm 10^{-14}$$

"Usually" that's enough to round

$$y = x$$
, $xxxxxxxxxxx17 \pm 10^{-14}$

Dilemma when

$$y = x$$
, $xxxxxxxxxxx50 \pm 10^{-14}$

- I want 12 significant digits
 - I have an approximation scheme that provides 14 digits
 - or,

$$y = \log(x) \pm 10^{-14}$$

• "Usually" that's enough to round

$$y = x$$
, $xxxxxxxxxxx17 \pm 10^{-14}$

$$y = x$$
, $xxxxxxxxxxxx83 \pm 10^{-14}$

Dilemma when

$$y = x, xxxxxxxxxx50 \pm 10^{-14}$$

The first table-makers rounded these cases randomly, and recorded them to confound copiers.

Ziv's onion peeling algorithm

1. Initialisation : $\varepsilon = \varepsilon_1$

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y\pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)
 - If yes,

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)
 - If yes, dilemma!

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)
 - If yes, dilemma! Reduce ε , and go back to 2

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)
 - If yes, dilemma! Reduce ε , and go back to 2

Ziv's onion peeling algorithm

- 1. Initialisation : $\varepsilon = \varepsilon_1$
- 2. Compute y such that $f(x) = y \pm \varepsilon$
- 3. Does $y \pm \varepsilon$ contain the middle point between two FP numbers?
 - If no, return RN(y)
 - If yes, dilemma! Reduce ε , and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.

When we know that the loop terminates...

CRLibm: 2-step approximation process

• first step fast but accurate to $\overline{\varepsilon}_1$

sometimes not accurate enough

(rarely) second step slower but always accurate enough

When we know that the loop terminates...

CRLibm: 2-step approximation process

- first step fast but accurate to $\overline{\varepsilon}_1$
- sometimes not accurate enough
- (rarely) second step slower but always accurate enough

$$T_{\mathsf{avg}} = T_1 + p_2 T_2$$

When we know that the loop terminates...

CRLibm: 2-step approximation process

- first step fast but accurate to $\overline{\varepsilon}_1$
- sometimes not accurate enough
- (rarely) second step slower but always accurate enough

$$T_{\mathsf{avg}} = T_1 + p_2 T_2$$

For each step, we want to prove a tight bound $\overline{\varepsilon}$ such that

$$\left|\frac{F(x)-f(x)}{f(x)}\right|\leq \overline{\varepsilon}$$

When we know that the loop terminates...

CRLibm: 2-step approximation process

- first step fast but accurate to $\overline{\varepsilon}_1$
- sometimes not accurate enough
- (rarely) second step slower but always accurate enough

$$T_{\mathsf{avg}} = T_1 + p_2 T_2$$

For each step, we want to prove a tight bound $\overline{\varepsilon}$ such that

$$|\frac{F(x)-f(x)}{f(x)}|\leq \overline{\varepsilon}$$

• Overestimating $\overline{\varepsilon}_2$ degrades T_2 ! (common wisdom)

When we know that the loop terminates...

CRLibm: 2-step approximation process

- first step fast but accurate to $\overline{\varepsilon}_1$
- sometimes not accurate enough
- (rarely) second step slower but always accurate enough

$$T_{\text{avg}} = T_1 + p_2 T_2$$

For each step, we want to prove a tight bound $\overline{\varepsilon}$ such that

$$|\frac{F(x)-f(x)}{f(x)}|\leq \overline{\varepsilon}$$

- Overestimating $\overline{\varepsilon}_2$ degrades T_2 ! (common wisdom)
- Overestimating $\overline{\varepsilon}_1$ degrades p_2 !

First correctly rounded elementary function in CRLibm

- exp by David Defour
- worst-case time $T_2 \approx 10,000$ cycles
- complex, hand-written proof

First correctly rounded elementary function in CRLibm

- exp by David Defour
- worst-case time $T_2 \approx 10,000$ cycles
- complex, hand-written proof
- duration : a Ph.D. thesis (2002)

First correctly rounded elementary function in CRLibm

- exp by David Defour
- worst-case time $T_2 \approx 10,000$ cycles
- complex, hand-written proof
- duration : a Ph.D. thesis (2002)

Conclusion was:

• performance and memory consumption of CR elem function is OK

First correctly rounded elementary function in CRLibm

- exp by David Defour
- worst-case time $T_2 \approx 10{,}000$ cycles
- o complex, hand-written proof
- duration : a Ph.D. thesis (2002)

Conclusion was:

- performance and memory consumption of CR elem function is OK
- problem now is : performance and coffee consumption of the programmer

Latest function developments in Arénaire

- C. Lauter at the end of his PhD,
 - development time for sinpi, cospi, tanpi :

Latest function developments in Arénaire

- C. Lauter at the end of his PhD,
 - development time for sinpi, cospi, tanpi : 2 days
 - worst-case time $T_2 \approx 1,000$ cycles

Latest function developments in Arénaire

- C. Lauter at the end of his PhD,
 - development time for sinpi, cospi, tanpi : 2 days
 - worst-case time $T_2 \approx 1,000$ cycles

(but as a result of three more PhDs)

Summary of the progress made

$$T_{\mathsf{avg}} = T_1 + p_2 T_2$$

- Reduction of T_1 by learning from Intel
- Reduction of p_2 by automating the computation of tight $\overline{\varepsilon}_1$ $(p_2$ is proportional to $\overline{\varepsilon}_1)$
- Reduction of T_2 by computing just right
- Reduction of coffee consumption by automating the whole thing

Summary of the progress made

$$T_{\mathsf{avg}} = T_1 + p_2 T_2$$

- Reduction of T_1 by learning from Intel
- Reduction of p_2 by automating the computation of tight $\overline{\varepsilon}_1$ $(p_2$ is proportional to $\overline{\varepsilon}_1)$
- Reduction of T₂ by computing just right
- Reduction of coffee consumption by automating the whole thing

The MetaLibm vision

Automate libm expertise so that a new, correct libm can be written for a new processor/context in minutes instead of months.

Open-source tools for FP coders

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

The GMP family

- GMP (GNU Multiple Precision) and its beautiful C++ wrapper
 - integer arithmetic
 - best asymptotic algorithms + lower layers in hand-crafted assembly code
- MPFR: Multiple Precision Floating-point correctly Rounded
 - a floating-point layer on top of GMP
 - IEEE 754-like specification
- MPFI: interval arithmetic on top of MPFR

Sollya (1)

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

- multiple-precision, last-bit accurate evaluation of arbitrary expressions
 - apologizes each time it rounds something

The Patriot bug

In 1991, a Patriot missile failed to intercept a Scud, and 28 people were killed.

- The code worked with time increments of 0.1 s.
- But 0.1 is not representable in binary.
- In the 24-bit format used, the number stored was 0.099999904632568359375
- The error was 0.0000000953.
- After 100 hours = 360,000 seconds, time is wrong by 0.34s.
- In 0.34s, a Scud moves 500m

In single, we don't have that many bits to accumulate garbage in them!

Test: which of the following increments should you use?

10

5

3

1

0.5

0.25

0.2

0.125

0.1

Sollya (2)

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

- guaranteed infinite norm $||f(x)||_{\infty}$ even in degenerate cases
 - $||f(x) P(x)||_{\infty}$ is a degenerate case...

Sollya (2)

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

- guaranteed infinite norm $||f(x)||_{\infty}$ even in degenerate cases
 - $||f(x) P(x)||_{\infty}$ is a degenerate case...
- Machine-efficient polynomial approximation

Machine-efficient polynomial approximation

- Remez' minimax algorithm finds the best polynomial approximation over the reals
- But we need polynomials with machine coefficients
 - float, double, fixed-point, ...
- Rounding Remez coefficients does not provide the best polynomial among polynomial with machine coefficients.

Machine-efficient polynomial approximation

- Remez' minimax algorithm finds the best polynomial approximation over the reals
- But we need polynomials with machine coefficients
 - float, double, fixed-point, ...
- Rounding Remez coefficients does not provide the best polynomial among polynomial with machine coefficients.
- Sollya does (almost).
 - this saves a few bits of accuracy
 - especially relevant for small precisions (FPGAs)
 - that's how we get our polynomials

Machine-efficient polynomial approximation

- Remez' minimax algorithm finds the best polynomial approximation over the reals
- But we need polynomials with machine coefficients
 - float, double, fixed-point, ...
- Rounding Remez coefficients does not provide the best polynomial among polynomial with machine coefficients.
- Sollya does (almost).
 - this saves a few bits of accuracy
 - especially relevant for small precisions (FPGAs)
 - that's how we get our polynomials

Nice number theory behind.

6 guaranteed log polynomials on one slide

A sollya script that computes appproximations to the log of various qualities

```
f = log(1+y);
I=[-0.25:.5]:
filename="/tmp/polynomials";
print("") > filename;
for deg from 2 to 8 do begin
  p = fpminimax(f, deg, [|0,23...|], I, floating, absolute);
  display=decimal;
  acc=floor(-log2(sup(supnorm(p, f, I, absolute, 2^(-40)))));
  print( " // degree = ", deg,
         " => absolute accuracy is ", acc, "bits" ) >> filename;
  print("#if ( DEGREE ==", deg, ")") >> filename;
  display=hexadecimal;
  print(" float p = ", horner(p) , ";") >> filename;
  print("#endif") >> filename;
end;
```

CGPE

Code generation for polynomial evaluation

- explores different parallelizations of a polynomial on a VLIW processor
- generates code and Gappa proof of the evaluation error

CGPE

Code generation for polynomial evaluation

- explores different parallelizations of a polynomial on a VLIW processor
- generates code and Gappa proof of the evaluation error

Used to generate the code for the division and square root of FLIP, a Floating-Point Library for Integer Processors (collaboration with ST Microelectronics)

Formal proof of floating-point code for the masses

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

```
1
2
3
```

```
yh2 = yh*yh;
ts = yh2 * (s3.d + yh2*(s5.d + yh2*s7.d));
Add12(*psh,*psi, yh, yi+ts*yh);
```

Upon entering DoSinZero, we have in y_h+y_I an approximation to the ideal reduced value $\hat{y}=x-k\frac{\pi}{256}$ with a relative accuracy ε_{argred} :

$$y_h + y_l = (x - k\frac{\pi}{256})(1 + \varepsilon_{\text{argred}}) = \hat{y}(1 + \varepsilon_{\text{argred}})$$
 (1)

with, depending on the quadrant, $\sin(\hat{y}) = \pm \sin(x)$ or $\sin(\hat{y}) = \pm \cos(x)$ and similarly for $\cos(\hat{y})$. This just means that \hat{y} is the ideal, errorless reduced value.

In the following we will assume we are in the case $\sin(\hat{y}) = \sin(x)$, (the proof is identical in the other cases), therefore the relative error that we need to compute is

$$\varepsilon_{\mathsf{sinkzero}} = \frac{(*\mathsf{psh} + *\mathsf{ps1})}{\mathsf{sin}(\mathsf{x})} - 1 = \frac{(*\mathsf{psh} + *\mathsf{ps1})}{\mathsf{sin}(\hat{\mathsf{y}})} - 1 \tag{2}$$

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range reduction). The difference is that we have as input a double-double yh + y1, which is itself an inexact term.

At Line 4, the error of neglecting y_l and the rounding error in the multiplication each amount to half an ulp:

$$\mathtt{yh2} = \mathtt{yh^2}(1+\varepsilon_{-53}) \text{, with } \mathtt{yh} = (\mathtt{yh} + \mathtt{yl})(1+\varepsilon_{-53}) = \hat{y}(1+\varepsilon_{\mathsf{argred}})(1+\varepsilon_{-53})$$

Therefore

$$yh2 = \hat{y}^2(1 + \varepsilon_{yh2}) \tag{3}$$

with

$$\overline{\varepsilon}_{yh2} = (1 + \overline{\varepsilon}_{argred})^2 (1 + \overline{\varepsilon}_{-53})^3 - 1 \tag{4}$$

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

$$P_{\mathsf{ts}}(\hat{y}) = \frac{\sin(\hat{y}) - \hat{y}}{\hat{y}} (1 + \varepsilon_{\mathrm{approxts}})$$

This error is computed in Maple as previously, only the interval changes:

$$\overline{\varepsilon}_{\mathrm{approxts}} = \left\| \frac{x P_{\mathsf{ts}}(x)}{\mathsf{sin}(x) - x} - 1 \right\|_{\infty}$$

We also compute $\overline{\varepsilon}_{hornerts}$, the bound on the relative error due to rounding in the Horner evaluation thanks to the compute_horner_rounding_error procedure. This time, this procedure takes into account the relative error carried by yh2, which is $\overline{\varepsilon}_{yh2}$ computed above. We thus get the total relative error on ts:

$$ts = P_{ts}(\hat{y})(1 + \varepsilon_{\text{hornerts}}) = \frac{\sin(\hat{y}) - \hat{y}}{\hat{y}}(1 + \varepsilon_{\text{approxts}})(1 + \varepsilon_{\text{hornerts}})$$
 (5)

The final Add12 is exact. Therefore the overall relative error is :

$$\begin{array}{ll} \varepsilon_{\mathsf{sinkzero}} & = & \frac{\left((\mathtt{yh} \otimes \mathtt{ts}) \oplus \mathtt{y1} \right) + \mathtt{yh}}{\mathsf{sin}(\hat{y})} - 1 \\ \\ & = & \frac{\left(\mathtt{yh} \otimes \mathtt{ts} + \mathtt{y1} \right) (1 + \varepsilon_{-53}) + \mathtt{yh}}{\mathsf{sin}(\hat{y})} - 1 \\ \\ & = & \frac{\mathtt{yh} \otimes \mathtt{ts} + \mathtt{y1} + \mathtt{yh} + \left(\mathtt{yh} \otimes \mathtt{ts} + \mathtt{y1} \right) . \varepsilon_{-53}}{\mathsf{sin}(\hat{y})} - 1 \end{array}$$

Let us define for now

$$\delta_{\mathrm{addsin}} = (\mathtt{yh} \otimes \mathtt{ts} + \mathtt{yl}).\varepsilon_{-53}$$
 (6)

Then we have

$$\varepsilon_{\mathsf{sinkzero}} \quad = \quad \frac{(\mathtt{yh} + \mathtt{yl})\mathtt{ts}(1 + \varepsilon_{-53})^2 + \mathtt{yl} + \mathtt{yh} \ + \ \delta_{\mathrm{addsin}}}{\sin(\hat{y})} \ - \ 1$$

Using (1) and (5) we get:

$$\varepsilon_{\mathsf{sinkzero}} \quad = \quad \frac{\hat{y}(1+\varepsilon_{\mathsf{argred}}) \times \frac{\sin(\hat{y})-\hat{y}}{\hat{y}}(1+\varepsilon_{\mathrm{approxts}})(1+\varepsilon_{\mathrm{hornerts}})(1+\varepsilon_{-53})^2 + \mathtt{yl} + \mathtt{yh} \ + \ \delta_{\mathrm{addsin}}}{\sin(\hat{y})} \ - \ 1$$

From CRLibm to MetaLibm

To lighten notations, let us define

$$\varepsilon_{\rm sin1} = (1 + \varepsilon_{\rm approxts})(1 + \varepsilon_{\rm hornerts})(1 + \varepsilon_{-53})^2 - 1$$
 (7)

We get

$$\begin{split} \varepsilon_{\mathsf{sinkzero}} & = & \frac{(\mathsf{sin}(\hat{y}) - \hat{y})(1 + \varepsilon_{\mathsf{sin1}}) + \hat{y}(1 + \varepsilon_{\mathsf{argred}}) \, + \, \delta_{\mathsf{addsin}} - \mathsf{sin}(\hat{y})}{\mathsf{sin}(\hat{y})} \\ & = & \frac{(\mathsf{sin}(\hat{y}) - \hat{y}).\varepsilon_{\mathsf{sin1}} + \hat{y}.\varepsilon_{\mathsf{argred}} \, + \, \delta_{\mathsf{addsin}}}{\mathsf{sin}(\hat{y})} \end{split}$$

Using the following bound :

$$|\delta_{\mathrm{addsin}}| = |(\mathtt{yh} \otimes \mathtt{ts} + \mathtt{yl}).\varepsilon_{-53}| < 2^{-53} \times |y|^3/3$$
 (8)

we may compute the value of $\overline{\epsilon}_{
m sinkzero}$ as an infinite norm under Maple. We get an error smaller than 2^{-67} .

Two years of experience showed that nobody (including myself) should trust such a proof

Two years of experience showed that nobody (including myself) should trust such a proof (and that nobody reads it anyway).

Two years of experience showed that nobody (including myself) should trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

- takes a set of C files.
- parses them,
- and outputs "The overall error of the computation is ...".

Two years of experience showed that nobody (including myself) should trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

- takes a set of C files.
- parses them,
- and outputs "The overall error of the computation is ...".

It's hopeless, of course:

Two years of experience showed that nobody (including myself) should trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

- takes a set of C files.
- parses them,
- and outputs "The overall error of the computation is ...".

It's hopeless, of course:

• Where, in your code, can you read what it is supposed to compute?

Two years of experience showed that nobody (including myself) should trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

- takes a set of C files,
- parses them,
- and outputs "The overall error of the computation is ...".

It's hopeless, of course:

- Where, in your code, can you read what it is supposed to compute?
- Most of the knowledge used to build the code is not in the code

but... automatic proof assistants are not there yet

- Research on formal proofs for arithmetic
 - John Harrison at Intel (HOL light)
 - Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
 - And many others...

but... automatic proof assistants are not there yet

- Research on formal proofs for arithmetic
 - John Harrison at Intel (HOL light)
 - Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
 - And many others...
- Proving Sterbenz Lemma (one operation) is worth a full paper.

but... automatic proof assistants are not there yet

- Research on formal proofs for arithmetic
 - John Harrison at Intel (HOL light)
 - Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
 - And many others...
- Proving Sterbenz Lemma (one operation) is worth a full paper.
- Here is the typical crlibm code for which I want the relative error :

```
yh2 = yh*yh;

ts = yh2 * (s3 + yh2*(s5 + yh2*s7));

tc = yh2 * (c2 + yh2*(c4 + yh2*c6));

Mul12(&cahyh_h,&cahyh_l, cah, yh);

Add12(thi, tlo, sah,cahyh_h);

tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_l+(cal*yh + cah*yl)))));

Add12(*psh,*psl, thi, tlo);
```

but... automatic proof assistants are not there yet

- Research on formal proofs for arithmetic
 - John Harrison at Intel (HOL light)
 - Marc Daumas and Sylvie Boldo in the Arénaire project (Cog, PVS)
 - And many others...
- Proving Sterbenz Lemma (one operation) is worth a full paper.
- Here is the typical crlibm code for which I want the relative error :

```
vh2 = vh*vh;
ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
tc = yh2 * (c2 + yh2*(c4 + yh2*c6));
Mul12(&cahyh_h,&cahyh_l, cah, yh);
Add12(thi, tlo, sah, cahyh_h);
tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_l+(cal*yh +
   cah*yl)))));
Add12(*psh,*psl, thi, tlo);
```

... and it changes all the time as we optimize it.

Let us take a simple example

```
s3 = -0.1666666666666665741480812812369549646973609924;

s5 = 8.333333333262892793358300735917509882710874081e-3;

s7 = -1.98400103113668426196153360407947729981970042e-4;

4

5 y2 = y * y;

ts = y2 * (s3 + y2*(s5 + y2*s7));

r = y + y*ts
```

- evaluation of sine as an odd polynomial $p(y) = y + s_3y^3 + s_5y^5 + s_7y^7$ (think Taylor for now)
- reparenthesized as $p(y) = y + y^2 t(y^2)$ to save operations
- y + y*ts is more accurate than y*(1+ts) in floating-point, do you see why?

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

• This polynomial is an approximation to sin(y)

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!
- y is not the ideal reduced argument Y (such that $x=Y+k\frac{\pi}{256}$)

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!
- y is not the ideal reduced argument Y (such that $x=Y+k\frac{\pi}{256}$)
- We have a rounding error in computing y^2

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!
- ullet y is not the ideal reduced argument Y (such that $x=Y+krac{\pi}{256}$)
- We have a rounding error in computing y^2
- y2 already stacks two errors. We evaluate ts out of it

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!
- y is not the ideal reduced argument Y (such that $x=Y+k\frac{\pi}{256}$)
- We have a rounding error in computing y^2
- y2 already stacks two errors. We evaluate ts out of it
- There is a rounding error hidden in each operation.

```
y2 = y * y;
ts = y2 * (s3 + y2*(s5 + y2*s7));
r = y + y*ts
```

- This polynomial is an approximation to sin(y)
- Oops, I wrote its coefficients in decimal!
- y is not the ideal reduced argument Y (such that $x = Y + k \frac{\pi}{256}$)
- We have a rounding error in computing y^2
- y2 already stacks two errors. We evaluate ts out of it
- There is a rounding error hidden in each operation.

How many correct bits at the end?

My programmer's genius is hidden in this code

Written by Guillaume Melquiond, Gappa is a tool that

• takes an input that closely matches your C file,

Written by Guillaume Melquiond, Gappa is a tool that

- takes an input that closely matches your C file,
- forces you to express what this code is supposed to compute

Written by Guillaume Melquiond, Gappa is a tool that

- takes an input that closely matches your C file,
- forces you to express what this code is supposed to compute
- ... and some numerical property to prove (expressed in terms of intervals)

Written by Guillaume Melquiond, Gappa is a tool that

- takes an input that closely matches your C file,
- forces you to express what this code is supposed to compute
- ... and some numerical property to prove (expressed in terms of intervals)
- and eventually outputs a proof of this property suitable for checking by Coq or HOL Light

Try it, it's free software

Using a machine's finite precision, manipulate reals safely

Using a machine's finite precision, manipulate reals safely

- represent a real x in a machine as an interval $[x_l, x_r]$ guaranteed to enclose it
 - x_l and x_r are finitely representable numbers (e.g. floating-point)
 - Example : π represented by [3.14, 3.15]

Using a machine's finite precision, manipulate reals safely

- represent a real x in a machine as an interval $[x_l, x_r]$ guaranteed to enclose it
 - x_l and x_r are finitely representable numbers (e.g. floating-point)
 - Example : π represented by [3.14, 3.15]
- ullet Operation \oplus on the reals o its interval counterpart

Guarantees based on the inclusion property

 $\mathit{I}_{\mathsf{x}} \oplus \mathit{I}_{\mathsf{y}}$ must be an interval I_{z} such that

$$\forall x \in I_x, \forall y \in I_y, \quad x \oplus y \in I_z$$

Using a machine's finite precision, manipulate reals safely

- represent a real x in a machine as an interval $[x_l, x_r]$ guaranteed to enclose it
 - x_l and x_r are finitely representable numbers (e.g. floating-point)
 - Example : π represented by [3.14, 3.15]
- ullet Operation \oplus on the reals \to its interval counterpart

Guarantees based on the inclusion property

 $I_x \oplus I_y$ must be an interval I_z such that

$$\forall x \in I_x, \forall y \in I_y, \quad x \oplus y \in I_z$$

• Example : interval addition using floating-point arithmetic

$$[a, b] + [c, d]$$
 is $[RoundDown(a + c), RoundUp(b + d)]$

• (multiplication, division similar but more complex)

A Gappa tutorial

```
# Convention: uncapitalized variables match the variables in the C code.
    v = float < ieee 64.ne > (dummv): # v is a double
                —— Transcription of the C code -
    s3 float < ieee 64.ne >= -1.66666666666666666741480812812369549646974e-01:
    s5 float < ieee 64.ne >= 8.3333333333333332176851016015461937058717e-03:
    s7 float < ieee 64.ne >= -1.9841269841269841252631711547849135968136e-04:
10
11
   v2 float < ieee_64 , ne >= y * y;
    ts float < ieee_64, ne >= y2 * (s3 + y2*(s5 + y2*s7));
   r float <ieee_64, ne>= v + v*ts;
13
14
        ----- Mathematical definition of what we are approximating -
16
         (The same expression as in the code, but without rounding errors)
17
18
19
   Ts = Y2 * (s3 + Y2*(s5 + Y2*s7)):
20
   R = Y + Y*Ts:
21
                             The theorem to prove
23
24
     # Hypotheses (numerical values computed by Sollya)
25
                  in [-6.15e-3, 6.15e-3] # Pi/512, rounded up
26
     / y - Y in [-2.53e-23, 2.53e-23] # max abs. range reduction error
     /\R-SinY in [-3.55e-23, 3.55e-23] # approximation error (this defines SinY)
28
    ->
29
    r-SinY in ?
                               # A goal: absolute error
30
31
     (r-SinY)/SinY in ? # Another goal: relative error
32
```

tutorial1.gappa

```
$ gappa < tutorial1.gappa Results for Y in [-0.00615, 0.00615] and y - Y in [-2.53e-23, 2.53 r - SinY in [-2^(-60.9998), 2^(-60.9998)] Warning: some enclosures were not satisfied. Missing (r - SinY) / SinY
```

- A tight bound on the absolute error
- No bound for the relative error
 - of course, I have to prove that SinY cannot come close to zero
 - that's formal proof for you

We should now try gappa -Bcoq

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.
- Naively, it would lead to interval bloat. Here for instance
 - $r \approx SinY \in [-2^{-7}, 2^{-7}]$
 - so $r SinY \in [-2^{-6}, 2^{-6}]$ using naive IA.

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.
- Naively, it would lead to interval bloat. Here for instance
 - $r \approx SinY \in [-2^{-7}, 2^{-7}]$
 - so $r SinY \in [-2^{-6}, 2^{-6}]$ using naive IA.
- Gappa uses rewriting of expressions

```
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY);
(hopefully now the sum of two smaller intervals)
```

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.
- Naively, it would lead to interval bloat. Here for instance
 - $r \approx SinY \in [-2^{-7}, 2^{-7}]$
 - so $r SinY \in [-2^{-6}, 2^{-6}]$ using naive IA.
- Gappa uses rewriting of expressions

```
As r = float64ne(E);

try and use the rule

float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY);

(hopefully now the sum of two smaller intervals)
```

- Add user-defined rewriting rules when Gappa is stuck
 - That's how you explain your floating-point tricks to the tool

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.
- Naively, it would lead to interval bloat. Here for instance
 - $r \approx \text{SinY} \in [-2^{-7}, 2^{-7}]$
 - so $r SinY \in [-2^{-6}, 2^{-6}]$ using naive IA.
- Gappa uses rewriting of expressions

```
As r = float64ne(E);

try and use the rule

float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY);

(hopefully now the sum of two smaller intervals)
```

- Add user-defined rewriting rules when Gappa is stuck
 - That's how you explain your floating-point tricks to the tool
- Internally, construction of a proof graph
 - Branches are cut when a shorter path or a better bound are found.

- Gappa tries to associate an interval with each expression.
- Interval arithmetic is used to combine these intervals, until the goal is reached.
- Naively, it would lead to interval bloat. Here for instance
 - $r \approx SinY \in [-2^{-7}, 2^{-7}]$
 - so $r SinY \in [-2^{-6}, 2^{-6}]$ using naive IA.
- Gappa uses rewriting of expressions

```
As r = float64ne(E);

try and use the rule

float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY);

(hopefully now the sum of two smaller intervals)
```

- Add user-defined rewriting rules when Gappa is stuck
 - That's how you explain your floating-point tricks to the tool
- Internally, construction of a proof graph
 - Branches are cut when a shorter path or a better bound are found.
 - The final graph will be used to generate the formal proof.

Gappa's theorem library

- Predefined set of rewriting rules :
 - float64ne(a)- b ->(float64ne(a)- a)+ (a b);
 - ...
- Support library of theorems (with their Coq proofs) :
 - Theorems giving the errors when rounding
 - ▶ a in [...] ->(float64ne(a)-a)/a in [...] Note how this takes care of dangerous cases (subnormal numbers, over/underflows...)

Gappa's theorem library

- Predefined set of rewriting rules :
 - float64ne(a)- b ->(float64ne(a)- a)+ (a b);
 - ...
- Support library of theorems (with their Coq proofs) :
 - Theorems giving the errors when rounding
 - a in [...] ->(float64ne(a)-a)/a in [...]
 Note how this takes care of dangerous cases (subnormal numbers,
 over/underflows...)
 - Classical theorems like Sterbenz Lemma
 - ...

Gappa's theorem library

Predefined set of rewriting rules :

```
• float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
```

- ...
- Support library of theorems (with their Coq proofs) :
 - Theorems giving the errors when rounding
 - a in [...] ->(float64ne(a)-a)/a in [...]
 Note how this takes care of dangerous cases (subnormal numbers,
 over/underflows...)
 - Classical theorems like Sterbenz Lemma
 - ...

To obtain a good relative error, Gappa will demand to prove that y may not be subnormal...

y + y*ts is a bit more accurate than y*(1+ts)

```
r1 float <ieee 64.ne>= v*(1+ts):
   r2 float <ieee_64, ne>= y+y*ts;
15
16
   vts float <ieee_64, ne>= v*ts; # for lighter hints
17
18
        ——— Mathematical definition of what we are approximating -
20
        (The same expression as in the code, but without rounding errors)
   Ts = Y2 * (s3 + Y2*(s5 + Y2*s7));
   Polv = v*(1+Ts):
24
                           The theorem to prove
25
26
     # Hypotheses (numerical values computed by Sollya)
   y in [1b-200, 6.15e-3] # left: Kahan/Douglas algorithm. Right: Pi/512, rounded up
28
29
    r1-/Poly in ?
                      # relative error
30
    r2-/Poly in ?
                      # relative error
32
33
34
                 -----Loads of rewriting hints needed for r2 -
   v+vts -> v* ( (1+ts) + ts*((yts-y*ts) / (y*ts))) {y*ts <> 0};
35
36
   (r2-Poly)/Poly \rightarrow ((r2 - (y+yts))/(y+yts) + 1) * ( ((y+yts)/y) / (1+Ts)) -1 {1+Ts}
        <>01:
38
39
   (v+vts)/v ->
40
             \# (v+v*ts-v*ts+vts) / v;
41
             \# 1 + ts + (yts - y*ts)/y;
42
             1+ts + ts*((yts-y*ts)/(y*ts)) {y*ts <> 0};
43
44
   ((y+yts)/y) / (1+Ts) \rightarrow (1+ts)/(1+Ts) + ts*((yts-y*ts)/(y*ts))/(1+Ts) {1+Ts<>0};
45
```

tutorial2.gappa

```
$ gappa < tutorial2.gappa</pre>
```

```
Results for y in [7.88861e-31, 0.00615]:

(r1 - Poly) / Poly in [-2^(-52.415), 2^(-52.415)]

(r2 - Poly) / Poly in [-2^(-52.9777), 2^(-52.9339)]
```

\$

- I probably failed to convey this, but...
 Gappa is surprisingly easy to use.
 (if you didn't understand my Gappa proof, you just don't understand my C code)
 - if you don't know where it is stuck, ask it (by adding goals)
 - then add rewriting rules to help it

- I probably failed to convey this, but...
 - Gappa is surprisingly easy to use.

(if you didn't understand my Gappa proof, you just don't understand my C code)

- if you don't know where it is stuck, ask it (by adding goals)
- then add rewriting rules to help it
- It is built upon very solid theoretical fundations

- I probably failed to convey this, but...
 - Gappa is surprisingly easy to use.

(if you didn't understand my Gappa proof, you just don't understand my C code)

- if you don't know where it is stuck, ask it (by adding goals)
- then add rewriting rules to help it
- It is built upon very solid theoretical fundations
- What we have now is generators of code + Gappa proof
 - The same RR work for large classes of generated codes.

- I probably failed to convey this, but...
 - Gappa is surprisingly easy to use.

(if you didn't understand my Gappa proof, you just don't understand my C code)

- if you don't know where it is stuck, ask it (by adding goals)
- then add rewriting rules to help it
- It is built upon very solid theoretical fundations
- What we have now is generators of code + Gappa proof
 - The same RR work for large classes of generated codes.
- Also support for arbitrary-precision fixed-point.

Conclusion

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

Main messages

• Are you able to express what your code is supposed to compute?

Main messages

• Are you able to express what your code is supposed to compute? If yes, we can help you sort out the gory floating-point issues.

Main messages

Are you able to express what your code is supposed to compute?
 If yes, we can help you sort out the gory floating-point issues.

 If you're computing accurately enough, you're probably computing too accurately.

The Arénaire Touch

All these developments are free software.

More automation means more optimization

- $\log(1+x)$
- Two parameters
 - k from 1 to 13, defines table size
 - target accuracy, between 20 and 120 bits
- 1203 implementations, all formally checked

My other research project

Computing just right for FPGAs

- Finer granularity : never compute 1 bit that you don't need
- More qualitative freedom: build the operators you need
 - A squarer, a multiplier by In(2), a divider by 3...
- Compute more efficiently?

http://flopoco.gforge.inria.fr/

Thank you for your attention

backup slides

Introduction: performance versus accuracy

Elementary function evaluation

Open-source tools for FP coders

Formal proof of floating-point code for the masses

Conclusion

backup slides

Classical doubled FP

- Store a 2p-digit number y as two p-digit numbers y_h and y_l
- $y = y_h + y_l$
- exponent $(y_l) \le exponent(y_h) p$

Example

Decimal format, p = 3 digits, 3.14159 stored as $y_h = 3.14$, $y_l = 1.59e - 3$

A lot of litterature to compute efficiently on doubled-FP.

Never compute more accurately than you need

Polynomial evaluation P(y) when $y < 2^{-k}$

For CRLibm

- doubled-binary64 (106 bits) is not enough,
- but triple-binary64 (159 bits) is overkill

An example of overlaping triple-double arithmetic

Add233: add a double-FP to a triple-FP

```
Require: a_h + a_\ell is a double-double number and b_h + b_m + b_\ell is a
   triple-double number such that |b_h| \le 2^{-2} \cdot |a_h|, |a_\ell| \le 2^{-53} \cdot |a_h|,
   |b_m| < 2^{-\beta_o} \cdot |b_h|, \quad |b_\ell| < 2^{-\beta_u} \cdot |b_m|.
Ensure: r_h + r_m + r_\ell is a triple-double number approximating
   a_h + a_\ell + b_h + b_m + b_\ell with a relative error given by the Theorem on next
   slide.
   (r_h, t_1) \leftarrow \mathsf{Fast2Sum}(a_h, b_h)
   (t_2, t_3) \leftarrow \mathsf{Fast2Sum}(a_\ell, b_m)
   (t_4, t_5) \leftarrow \mathsf{Fast2Sum}(t_1, t_2)
   t_6 \leftarrow \mathsf{RN}(t_3 + b_\ell)
   t_7 \leftarrow \mathsf{RN}(t_6 + t_5)
   (r_m, r_\ell) \leftarrow \mathsf{Fast2Sum}(t_4, t_7)
```

 β_o and β_u measure the possible overlap of the significands of the inputs.

The associated theorem

Theorem (Result overlap and relative error of Add233)

Under the conditions on previous slide, the values r_h , r_m , and r_ℓ returned by the algorithm satisfy

$$r_h + r_m + r_\ell = ((a_h + a_\ell) + (b_h + b_m + b_\ell)) \cdot (1 + \varepsilon),$$

where ε is bounded by

$$|\varepsilon| \le 2^{-\beta_o - \beta_u - 52} + 2^{-\beta_o - 104} + 2^{-153}.$$

The values r_m and r_ℓ will not overlap at all, and the overlap of r_h and r_m will be bounded by

$$|r_m| \leq 2^{-\gamma} \cdot |r_h|$$

with

$$\gamma \geq \min(45, \beta_o - 4, \beta_o + \beta_u - 2)$$
.

30 more, but who will read the proofs?

- See crlibm source and documentation for the operators themselves.
- Manipulating these theorems by hand is painful: Lauter's metalibm assembles such operators automatically for polynomial evaluation.