
1 1

Accuracy-Aware
High-Efficiency Math

Tim Mattson

Principle Engineer

Intel Labs

Integers
Fixed-point

Floating-point
Accuracy-aware

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speaker and not his employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if I say anything really
stupid, it’s my fault … don’t blame my collaborators.

Floating Point numbers are not Real

• Floating point numbers are NOT a closed set.

– “A op B” can generate results that don’t fit in a floating

point format.

float A = 0.01f;

If (100 * A != 1.0) printf(“oops”);

float, c, b = 1000.2f;

c = b - 1000.0;

printf (" %f”, c);
Output: 0.200012

Output: “oops”

 0.01 and 0.2 do not have exact binary representations
… so the computer rounds to the nearest floating point
number.

Floating point arithmetic is not associative

• Floating point numbers are:
–NOT Associative: A * (C * B) ≠ (A * C) * B

–NOT Distributive: A*(B+C) ≠ A*B + A*C

• A simple test:
–Fill 2 arrays each with 10000 random values between 0.0

and 1.0

–Shift one up by 100 and one down by 0.001

–Mix the arrays together, sum them and subtract a large
number (500000)

–Results:
– 170.968750 with 1 thread

– 171.968750 with 2 threads

– 172.750000 with 4 threads

Floating point arithmetic is not associative

• Floating point numbers are:
–NOT Associative: A * (C * B) ≠ (A * C) * B

–NOT Distributive: A*(B+C) ≠ A*B + A*C

• A simple test:
–Fill 2 arrays each with 10000 random values between 0.0

and 1.0

–Shift one up by 100 and one down by 0.001

–Mix the arrays together, sum them and subtract a large
number (500000)

–Results:
– 170.968750 with 1 thread

– 171.968750 with 2 threads

– 172.750000 with 4 threads

Which of these answers is right?

They are all equally “right” … the

true answer is 177.750

You can’t pick one random order

of FLOPS and arbitrarily call it the

“right one”.

“How do you know the answer to a floating

point computation is correct?”

Common responses:

– Laughter … “of course they are correct … you

must be joking”

– “We used double precision.

– “It’s the same answer we’ve always gotten.”

– “It’s the same answer others get.”

– “It agrees with special-case analytic answers.”

… But this is not a joke. It is a very serious question

When you don’t know accuracy (1)…

Sleipner Oil Rig Collapse (8/23/91) . Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Inaccurate linear elastic model used with NASTRAN underestimated shear

stresses by 47% resulted in concrete walls that were too thin.
Third party names are the property of their owners

When you don’t know accuracy (2)…

Vancouver stock exchange index undervalued by 50%
(Nov. 25, 1983)

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

Index managed on an IBM/370. 3000 trades a day and for each trade, the

index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per

transaction. After 22 months, the index had lost half its value.
Third party names are the property of their owners

…and inaccuracy can really hurt
Patriot missile incident (2/25/91) . Failed to stop a scud

missile from hitting a barracks, killing 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

System counted time in 1/10 sec increments … which doesn’t have an exact

binary representation. Over time, error accumulates. The incident occurred

after 100 hours of operation … at which point the accumulated errors in time

variable resulted in a 600+ meter tracking error.
Third party names are the property of their owners

The Problem

• How often do we have “working” software that is “silently”

producing inaccurate results?

– We don’t know … nobody is keeping count.

• But we do know this is an issue for 2 reasons:
(see Kahan’s desperately needed Remedies…)

– Numerically Naïve (and unchallenged) formulas in text books (e.g.

solving quadratic equations).

– Errors found after years of use (Rank estimate in use since 1965 and in

LINPACK, LAPACK, and MATLAB (Zlatko Drmac and Zvonimir Bujanovic 2008, 2010).

Errors in LAPACK’s _LARFP found in 2010.)

• Solution? We need programmers to understand numerical

analysis … but that isn’t going to happen.

Computer Science has changed over my lifetime.

Numerical Analysis seems to have turned into a sliver

under the fingernails of computer scientists
Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011

How should we respond?

• Programmers should conduct mathematically rigorous analysis of their

floating point intensive applications to validate their correctness.

• But this won’t happen … training of modern programmers all but ignores

numerical analysis. The following tricks* help and are better than nothing …

1. Repeat the computation with arithmetic of increasing precision,

increasing it until a desired number of digits in the results agree.

2. Repeat the computation in arithmetic of the same precision but rounded

differently, say Down then Up and perhaps Towards Zero, then

compare results.

3. Repeat computation a few times in arithmetic of the same precision but

with slightly different input data, and see how widely results varry.

These are useful techniques, but they don’t go far enough.

How can the discerning skeptic confidently use FLOPs?

*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?

Outline

• What is the problem?

• Solutions

– Use so many bits you can pretend there is no problem

– Change how we model real arithmetic on computers

– Use only the bits you need

– Let the hardware solve the problem

• Conclusion

Solution: use lots of bits and hope for the best …

Is 64 bits enough? Is it too much? We’re guessing.

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010

20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

Third party names are the property of their owners

Quad Precision

• There are pathological cases where you lose all the

precision in an answer, but the more common case is that

you lose only half the digits.

• Hence, for 32 or 64 bit input data, quad precision (113

significant bits) is probably adequate to make most

computations safe (Kahan 2011).

 14

• IEEE 754TM defines a range of formats including quad (128)

binary32 binary64 binary128

P, digits 24 53 113

emax +127 +1023 +16383

Wider floating point formats turn compute bound

problems into memory bound problems

Energy implications of floating point numbers:

32 bit vs. 64 bit numbers

Operation Approximate

energy consumed

today

64-bit multiply-add 64 pJ

Read/store register data 6 pJ

Read 64 bits from DRAM 4200 pJ

Read 32 bits from DRAM 2100 pJ

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010

Simply using single precision in DRAM instead of double saves

as much energy as 30 on-chip floating-point operations.

energy savings: replace 64 bit flops with 32 bit flops

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

%
 E

n
e

rg
y
 s

a
v
e

d
 re

p
la

c
in

g
 6

4
-b

it

w
ith

 3
2

-b
it flo

p
s

H
P

L

M
o

n
te

C
a
rlo

B
la

c
k

-

S
c
h

o
le

s

C
P

U
0

6
-

C
a
c
tu

s

A
 c

ra
s

h

c
o

d
e

E
3
D

s
e
g

s
a
lt

N
A

M
D

-

s
tm

v

G
A

M
E

S
S

-s
i1

5
h

1
6

Source: Intel … based on a workload data set provided by Hugh Caffey Third Party names are the property of their owners.

How do you decide where you can safely reduce precision?

Assume: energy scales linearly with #of bits, 64 bit FLOP

@ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.

Maybe we don’t want Quad after all?

• If Performance/Watt is the goal, using Quad everywhere to

avoid careful numerical analysis is probably a bad idea.

18

Outline

• What is the problem?

• Solutions

– Use so many bits you can pretend there is no problem

– Change how we model real arithmetic on computers

– Use only the bits you need

– Let the hardware solve the problem

• Conclusion

Interval Numbers

• Interval number: the range of possible values within a closed set

}|{:],[xxxRxxx x

1/3 ≈ 0.333333

𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑎𝑟𝑡ℎ ≈ 6371 km 𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑎𝑟𝑡ℎ ∈ 6353, 6384 𝑘𝑚

• Representing real numbers:

– A single floating point number

– An interval that bounds the real number

• Representing physical quantities:

 – An single value (e.g. an average)

– The range of possible values

1/3 ∈ [0.33333, 0.33334]

Interval Arithmetic

Let x = [a, b] and y = [c, d] be two interval numbers

2. Subtraction x y = [a, b] [c, d] = [a d, b c]

3. Multiplication xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4. Reciprocal 1 / y = [1/d, 1/c]

5. Division x/y =
𝑦 ∈ 0

𝑦 ∉ 0

[∞, −∞]

𝑥 ∙ 1/𝑦

1. Addition x + y = [a, b] + [c, d] = [a + c, b + d]

𝑐, 𝑑 ≠ 0

𝑐, 𝑑 ≠ 0

Properties of Interval Arithmetic

Let x, y and z be interval numbers

1. Commutative Law

x + y = y + x

xy = yx

3. Distributive Law does not always hold, but

x(y + z) xy + xz

2. Associative Law

x + (y + z) = (x + y) + z

x(yz) = (xy)z

Functions and Interval arithmetic

• Interval extension of a function

23

𝑓 𝑥 ⊇ {𝑓(𝑦)|𝑦 ∈ 𝑥 }

• Naively can just replace variables with intervals. But be

careful … you want an interval extension that produces

bounds that are as narrow as possible. For example …

𝑓 𝑥 = 𝑥 − 𝑥 𝑙𝑒𝑡 𝑥 = [1,2]

𝑓 𝑥 = 1 − 2, 2 − 1 = [−1,1]

• An interval extension with tighter bounds can be produced by

modifying the function so the variable x appears only once.

𝑓 𝑥 = 𝑥 − 𝑥 = 𝑥 1 − 1 = 0

Working with Intervals:

Example: Laplace’s Equation*

• Magenta line specifies

boundary condition.

• Inside the unit square,

Ñ2F = 0

F

x

y

• (Classic problem for

relaxation methods, but

multigrid has lowest

arithmetic complexity.)

*Source: John Gustafson of AMD

Laplace’s Solvers*: Which is Better?

64-bit floating point method

seems to have converged.

15 decimals, some of them

probably correct.

16-bit interval arithmetic

provably bounds answer to 3

decimals, uses half the

storage, memory bandwidth

and energy

*Source: John Gustafson of AMD

Interval Math: Due for a Revival?

• Interval Arithmetic has been tried for decades, but often

produces bounds too loose to be useful.

• In many other areas of computing, speed has been turned

into improved quality of answer, not reduction in total task

time.

• Midpoint-radius storage (x ± r) is more bit-efficient than

[A,B] because when bounds are tight, A and B have

redundant bits

• By doing more flops AND using many cores, we can keep

the bounds tight, and produce rigorous, high-quality answers

for the first time.

Rigorous bound approaches exist for

• Radiation transfer (graphics, heat)

• Pin-connected truss structures (general structural analysis

in the limit of fine structures)

• N-body dynamics

• PDEs like Laplace where bounding the forcing function

leads to bounds on the answer

• This could be a “Golden Age” for algorithm research! We

need all new methods.

Rigorous Quadratic Equation Bounds-1

28

• Find roots r1, r2 for interval a, b, c values in ax2+bx+c=0.

• Completely contain possible answer set, without waste.

r1

r2

*Source: John Gustafson of AMD

Rigorous Quadratic Equation Bounds-2

• Remove all squares not part of the cover set.

r1

r2

*Source: John Gustafson of AMD

Rigorous Quadratic Equation Bounds-3

• Assign processors different 2D intervals in that cover set,

each propagating to the next computing task

r1

r2

0

1

2

3

4

5

6

7

8

9
10

11

12

*Source: John Gustafson of AMD

Benefits of this approach

1. This is a new direction of scaling a problem. The more

processors and speed, the higher the answer quality. A

single core gets a rigorous “containment” of the answer, but

looser than a powerful computer can get.

2. Provides resiliency check for floating-point math; error

shows up as a value that is not contiguous when the starting

set was contiguous. (Like a voting scheme, except there is

no useless redundancy; every computation helps get

answer)

3. Drastically increases the ratio of useful floating-point

operations to memory operations, helping with “the memory

wall”!

The problems with Intervals

• Interval ops are expensive:

– Using directed rounding from IEEE754, you can do mathematically

rigorous interval arithmetic on modern microprocessors … but they

are slowed compared to “normal” floating point ops.

• Designing useful interval extensions of functions can be

prohibitively difficult.

– Just replacing floats with intervals results in bounds that are

needlessly large (e.g. remember the division problem for intervals

that contain zero).

• While many interval algorithms are well known, there are

many problems that we don’t know how to effectively solve

with interval arithmetic. It isn’t a general solution.

32

Outline

• What is the problem?

• Solutions

– Use so many bits you can pretend there is no problem

– Change how we model real arithmetic on computers

– Use only the bits you need

– Let the hardware solve the problem

• Conclusion

How many bits do we really need?

34

J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of

Floating Point Arithmetic,” in IEEE Transactions on VLSI systems, Vol. 8, No.3, pp 273-286, June 2000. [2]

M. Stevenson, J. Babb,

They varied the

number of bits used

to see when the

accuracy degraded

Sphinx: speech recognition

ALVIN: Neural net trainer from SPECfp92

PCASYS: NIST finger print recognition

Bench22: image processing

Fast DCT: direct, 2D DCT

Selectively reducing precision … without

armies of numerical analysts doing the work “by hand”

35

Source: Techniques for the automatic debugging of scientific floating point programs,

Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010

Adapt methods from

“delta debugging” to

automatically find

where reduced

precision can be used

(Koushik Sen’s group

at UC Berkeley).

Search procedures

36

Current transformations:

•Float double

•Double double-double

•Rounding: rn(ru, rd, rz)

Source: Techniques for the automatic debugging of scientific floating point

programs, Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010

Manage precision for performance,

correctness and power

37

Source: Techniques for the automatic debugging of scientific floating point

programs, Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010

A Developer Scenario

• Developer compiles app with

tool to track accuracy, display

results with “± n.nn” outputs

• Discovers 95% of app only

needs 16-bit ops; tool identifies

5% where 32-bit needed.

• Developer rewrites app for 16-

bit ops, removes accuracy

tracking for production version

• 4x speed in Ivy Bridge, more

frames per second, less power

throttling in large data center

servers

Outline

• What is the problem?

• Solutions

– Use so many bits you can pretend there is no problem

– Change how we model real arithmetic on computers

– Use only the bits you need

– Let the hardware solve the problem

• Conclusion

Hardware support for assured accuracy

40

• An Intel labs chip … supports variable precision math with uncertainty

tracking. Can use with software that runs at low precision, tracks accuracy

and reruns computations automatically if the error grow too large.

H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy, S. Borkar, “A 1.45 GHz 52-162 GFLOPR./S

variable-0precision floating-point fused multiply-add unit with certainty tracking in 32 nm CMOS”, ICCSS, p. 182, 2012

Computing the FMA and uncertainty

• How does the chip define the FMA/uncertainty computation?

41

𝑂 ± ∆𝑂 = 𝐴 ± ∆𝐴 ∗ 𝐵 ± ∆𝐵 + (𝐶 ± ∆𝐶) ± ∆𝑅

𝑂 ± ∆𝑂 = 𝐴 ∗ 𝐵 + 𝐶 + (∆𝐴 ∗ ∆𝐵 ± (𝐵 ∗ ∆𝐴 + 𝐴 ∗ ∆𝐵 + ∆𝐶 + ∆𝑅)

• Operands A, B and C (A*B+C) with their uncertainties. ∆𝑅 is a

rounding error.

• Expand the above and gather terms to find O and ∆𝑂 .

FMA “recentered” to

account for the error term

∆𝑂 𝑂

A variable precision FMA with “Certainty tracking”

42

Outline

• What is the problem?

• Solutions

– Use so many bits you can pretend there is no problem

– Change how we model real arithmetic on computers

– Use only the bits you need

– Let the hardware solve the problem

• Conclusion

None of these ideas alone solves the problem in

all cases, but maybe if we combined them into a

single integrated system, we’d have a solution?

Intel Labs
test chip

Accuracy fields

attached to FP

Automate much of the work

of a numerical analyst

Interval arithmetic

made practical

New parallel

techniques for tight,

rigorous bounds Hardware with built-in X±r
accuracy tracking field

Accuracy-

Aware

Arithmetic

Numbers that know

their own accuracy

and history

Summary

• We do not know if results from our floating point intensive

applications are correct.

– We could know … IEEE 754TM combined with good numerical

analysis can solve the problem, but programmers don’t know

numerical analysis and nothing suggests this will change.

• We need to rethink how we use floating point arithmetic

and create the right tools to support assured accuracy.

• Assured accuracy has many benefits

– Knowing (not guessing and hoping) that are programs are correct.

– If we know how many bits we need, maybe we can use less … and

less bits saves energy

45 Third party names are the property of their owners

