
1 1 

Accuracy-Aware 
High-Efficiency Math 

Tim Mattson 

Principle Engineer 

Intel Labs 

Integers 
Fixed-point 

Floating-point 
Accuracy-aware 



2 2 

Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speaker and not his employer. 

 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation. 

 

• This was a team effort, but if I say anything really 
stupid, it’s my fault … don’t blame my collaborators. 

 



Floating Point numbers are not Real 

• Floating point numbers are NOT a closed set.   

– “A op B” can generate results that don’t fit in a floating 

point format. 

float A = 0.01f; 

If (100 * A   !=   1.0) printf(“oops”); 

float, c, b = 1000.2f; 

c = b - 1000.0; 

printf (" %f”, c); 
Output: 0.200012 

Output: “oops” 

 0.01 and 0.2 do not have exact binary representations 
… so the computer rounds to the nearest floating point 
number. 



Floating point arithmetic is not associative 

• Floating point numbers are: 
–NOT Associative:  A * (C * B)  ≠ (A * C) * B  

–NOT Distributive:  A*(B+C) ≠ A*B + A*C 

• A simple test: 
–Fill 2 arrays each with 10000 random values between 0.0 

and 1.0 

–Shift one up by 100 and one down by 0.001 

–Mix the arrays together, sum them and subtract a large 
number (500000) 

–Results: 
– 170.968750 with 1 thread 

– 171.968750 with 2 threads 

– 172.750000 with 4 threads 



Floating point arithmetic is not associative 

• Floating point numbers are: 
–NOT Associative:  A * (C * B)  ≠ (A * C) * B  

–NOT Distributive:  A*(B+C) ≠ A*B + A*C 

• A simple test: 
–Fill 2 arrays each with 10000 random values between 0.0 

and 1.0 

–Shift one up by 100 and one down by 0.001 

–Mix the arrays together, sum them and subtract a large 
number (500000) 

–Results: 
– 170.968750 with 1 thread 

– 171.968750 with 2 threads 

– 172.750000 with 4 threads 

Which of these answers is right? 

They are all equally “right” … the 

true answer is 177.750 

You can’t pick one random order 

of FLOPS and arbitrarily call it the 

“right one”. 



“How do you know the answer to a floating 

point computation is correct?” 

Common responses: 

– Laughter … “of course they are correct … you 

must be joking” 

– “We used double precision. 

– “It’s the same answer we’ve always gotten.” 

– “It’s the same answer others get.” 

– “It agrees with special-case analytic answers.” 

… But this is not a joke.  It is a very serious question  



When you don’t know accuracy (1)… 

Sleipner Oil Rig Collapse (8/23/91) . Loss: $700 million. 

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html 

Inaccurate linear elastic model used with NASTRAN underestimated shear 

stresses by 47% resulted in concrete walls that were too thin.  
Third party names are the property of their owners 



When you don’t know accuracy (2)… 

Vancouver stock exchange index undervalued by 50%  
(Nov. 25, 1983) 

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html 

Index managed on an IBM/370.  3000 trades a day and for each trade, the 

index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per 

transaction.  After 22 months, the index had lost half its value. 
Third party names are the property of their owners 



…and inaccuracy can really hurt 
Patriot missile incident (2/25/91) .  Failed to stop a scud 

missile from hitting a barracks, killing 28 Americans. 

See http://www.fas.org/spp/starwars/gao/im92026.htm 

System counted time in 1/10 sec increments … which doesn’t have an exact 

binary representation. Over time, error accumulates.  The incident occurred 

after 100 hours of operation … at which point the accumulated errors in time 

variable resulted in a 600+ meter tracking error. 
Third party names are the property of their owners 



The Problem 

• How often do we have “working” software that is “silently” 

producing inaccurate results? 

– We don’t know … nobody is keeping count. 

• But we do know this is an issue for 2 reasons:  
(see Kahan’s desperately needed Remedies…) 

– Numerically Naïve (and unchallenged) formulas in text books (e.g. 

solving quadratic equations). 

– Errors found after years of use (Rank estimate in use since 1965 and in 

LINPACK, LAPACK, and MATLAB (Zlatko Drmac and Zvonimir Bujanovic 2008, 2010). 

Errors in LAPACK’s _LARFP found in 2010.) 

• Solution?  We need programmers to understand numerical 

analysis … but that isn’t going to happen. 

Computer Science has changed over my lifetime.  

Numerical Analysis seems to have turned into a sliver 

under the fingernails of computer scientists 
Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011 



How should we respond? 

• Programmers should conduct mathematically rigorous analysis of their 

floating point intensive applications to validate their correctness. 

• But this won’t happen … training of modern programmers all but ignores 

numerical analysis.  The following tricks* help and are better than nothing …  

1. Repeat the computation with arithmetic of increasing precision, 

increasing it until a desired number of digits in the results agree. 

2. Repeat the computation in arithmetic of the same precision but rounded 

differently, say Down then Up and perhaps Towards Zero, then 

compare results. 

3. Repeat computation a few times in arithmetic of the same precision but 

with slightly different input data, and see how widely results varry. 

These are useful techniques, but they don’t go far enough.  

How can the discerning skeptic confidently use FLOPs?   

*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?  



Outline 

• What is the problem? 

• Solutions 

– Use so many bits you can pretend there is no problem 

– Change how we model real arithmetic on computers 

– Use only the bits you need   

– Let the hardware solve the problem 

• Conclusion 



Solution: use lots of bits and hope for the best … 

Is 64 bits enough? Is it too much? We’re guessing. 

70 

80 

1970 1980 1990 2000 

Bits 

Year 

CDC 60 

2010 

20 

30 

40 

50 

60 

1940 1950 1960 

Zuse 22 

Univac, IBM 36 

Cray 64 most vendors 64 

x86 80 (stack only) 

Third party names are the property of their owners 



Quad Precision  

• There are pathological cases where you lose all the 

precision in an answer, but the more common case is that 

you lose only half the digits.   

• Hence, for 32 or 64 bit input data, quad precision (113 

significant bits) is probably adequate to make most 

computations safe (Kahan 2011). 
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• IEEE 754TM defines a range of formats including quad (128) 

 
binary32 binary64 binary128 

P, digits 24 53 113 

emax +127 +1023 +16383 



Wider floating point formats turn compute bound 

problems into memory bound problems 



Energy implications of floating point numbers: 

32 bit vs. 64 bit numbers 

Operation Approximate 

energy consumed 

today 

64-bit multiply-add 64 pJ 

Read/store register data 6 pJ 

Read 64 bits from DRAM 4200 pJ 

Read 32 bits from DRAM 2100 pJ 

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010 

Simply using single precision in DRAM instead of double saves 

as much energy as 30 on-chip floating-point operations. 



energy savings: replace 64 bit flops with 32 bit flops 
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Source: Intel … based on a workload data set provided by Hugh Caffey Third Party names are the property of their owners. 

How do you decide where you can safely reduce precision?  

Assume: energy scales linearly with #of bits, 64 bit FLOP 

@ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.  



Maybe we don’t want Quad after all? 

• If Performance/Watt is the goal, using Quad everywhere to 

avoid careful numerical analysis is probably a bad idea. 
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Outline 

• What is the problem? 

• Solutions 

– Use so many bits you can pretend there is no problem 

– Change how we model real arithmetic on computers 

– Use only the bits you need   

– Let the hardware solve the problem 

• Conclusion 



Interval Numbers 

• Interval number: the range of possible values within a closed set  
 

 

 
}|{:],[ xxxRxxx x

1/3 ≈ 0.333333 

𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑎𝑟𝑡ℎ ≈ 6371 km 𝑟𝑎𝑑𝑖𝑢𝑠𝑒𝑎𝑟𝑡ℎ ∈ 6353, 6384   𝑘𝑚 

• Representing real numbers: 

 

 

– A single floating point number  

 

– An interval that bounds the real number 

• Representing physical quantities: 

 – An single value (e.g. an average) 

 

– The range of possible values 

1/3 ∈ [0.33333, 0.33334] 



Interval Arithmetic 

Let x = [a, b] and y = [c, d] be two interval numbers  

2. Subtraction      x  y  = [a, b]  [c, d] = [a d, b c] 

3. Multiplication   xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)] 

4. Reciprocal       1 / y = [1/d, 1/c] 

 

5. Division           x/y = 
𝑦 ∈ 0 

𝑦 ∉ 0 

[∞, −∞] 

𝑥 ∙ 1/𝑦 

1. Addition       x + y   = [a, b] + [c, d] = [a + c, b + d] 

 

𝑐, 𝑑 ≠ 0  

𝑐, 𝑑 ≠ 0  



Properties of Interval Arithmetic 

Let x, y and z be interval numbers 

1.  Commutative Law 

x + y = y + x 

xy = yx 

 

3.  Distributive Law does not always hold, but 

x(y + z) xy + xz 

 

 

2.  Associative Law 

x + (y + z) = (x + y) + z 

x(yz) = (xy)z 

 

 



Functions and Interval arithmetic 

• Interval extension of a function 
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𝑓 𝑥 ⊇ {𝑓(𝑦)|𝑦 ∈ 𝑥 } 

• Naively can just replace variables with intervals.  But be 

careful … you want an interval extension that produces 

bounds that are as narrow as possible.  For example … 

𝑓 𝑥 = 𝑥 − 𝑥 𝑙𝑒𝑡 𝑥 = [1,2] 

𝑓 𝑥 = 1 − 2, 2 − 1 = [−1,1] 

• An interval extension with tighter bounds can be produced by 

modifying the function so the variable x appears only once. 

𝑓 𝑥 = 𝑥 − 𝑥 = 𝑥 1 − 1 = 0 



Working with Intervals: 

Example: Laplace’s Equation* 

• Magenta line specifies 

boundary condition. 

• Inside the unit square,  

Ñ2F = 0

F 

x 

y 

• (Classic problem for 

relaxation methods, but 

multigrid has lowest 

arithmetic complexity.) 

*Source: John Gustafson of AMD 



Laplace’s Solvers*: Which is Better? 

64-bit floating point method 

seems to have converged. 

15 decimals, some of them 

probably correct. 

16-bit interval arithmetic 

provably bounds answer to 3 

decimals, uses half the 

storage, memory bandwidth 

and energy 

*Source: John Gustafson of AMD 



Interval Math: Due for a Revival? 

• Interval Arithmetic has been tried for decades, but often 

produces bounds too loose to be useful. 

• In many other areas of computing, speed has been turned 

into improved quality of answer, not reduction in total task 

time. 

• Midpoint-radius storage ( x ± r ) is more bit-efficient than 

[A,B] because when bounds are tight, A and B have 

redundant bits 

• By doing more flops AND using many cores, we can keep 

the bounds tight, and produce rigorous, high-quality answers 

for the first time. 



Rigorous bound approaches exist for 

• Radiation transfer (graphics, heat) 

• Pin-connected truss structures (general structural analysis 

in the limit of fine structures) 

• N-body dynamics   

• PDEs like Laplace where bounding the forcing function 

leads to bounds on the answer 

• This could be a “Golden Age” for algorithm research! We 

need all new methods. 



Rigorous Quadratic Equation Bounds-1 
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• Find roots r1, r2 for interval a, b, c values in ax2+bx+c=0. 

• Completely contain possible answer set, without waste. 

r1 

r2 

*Source: John Gustafson of AMD 



Rigorous Quadratic Equation Bounds-2 

• Remove all squares not part of the cover set. 

r1 

r2 

*Source: John Gustafson of AMD 



Rigorous Quadratic Equation Bounds-3 

• Assign processors different 2D intervals in that cover set, 

each propagating to the next computing task 

r1 

r2 

0 

1 
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*Source: John Gustafson of AMD 



Benefits of this approach 

1. This is a new direction of scaling a problem. The more 

processors and speed, the higher the answer quality. A 

single core gets a rigorous “containment” of the answer, but 

looser than a powerful computer can get. 

2. Provides resiliency check for floating-point math; error 

shows up as a value that is not contiguous when the starting 

set was contiguous. (Like a voting scheme, except there is 

no useless redundancy; every computation helps get 

answer) 

3. Drastically increases the ratio of useful floating-point 

operations to memory operations, helping with “the memory 

wall”! 



The problems with Intervals 

• Interval ops are expensive: 

– Using directed rounding from IEEE754, you can do mathematically 

rigorous interval arithmetic on modern microprocessors … but they 

are slowed compared to “normal” floating point ops. 

• Designing useful interval extensions of functions can be 

prohibitively difficult.  

– Just replacing floats with intervals results in bounds that are 

needlessly large (e.g. remember the division problem for intervals 

that contain zero). 

• While many interval algorithms are well known, there are 

many problems that we don’t know how to effectively solve 

with interval arithmetic.  It isn’t a general solution. 
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Outline 

• What is the problem? 

• Solutions 

– Use so many bits you can pretend there is no problem 

– Change how we model real arithmetic on computers 

– Use only the bits you need   

– Let the hardware solve the problem 

• Conclusion 



How many bits do we really need? 
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J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of 

Floating Point Arithmetic,” in IEEE Transactions on VLSI systems, Vol. 8,  No.3, pp 273-286, June 2000. [2] 

M. Stevenson, J. Babb, 

They varied the 

number of bits used 

to see when the 

accuracy degraded 

Sphinx: speech recognition 

ALVIN: Neural net trainer from SPECfp92 

PCASYS: NIST finger print recognition 

Bench22: image processing 

Fast DCT: direct, 2D DCT 



Selectively reducing precision … without 

armies of numerical analysts doing the work “by hand” 
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Source: Techniques for the automatic debugging of scientific floating point programs, 

Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010 

Adapt methods from 

“delta debugging” to 

automatically find 

where reduced 

precision can be used 

(Koushik Sen’s group 

at UC Berkeley). 



Search procedures 

36 

Current transformations: 

•Float  double 

•Double  double-double 

•Rounding:  rn(ru, rd, rz) 

Source: Techniques for the automatic debugging of scientific floating point 

programs, Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010 



Manage precision for performance, 

correctness and power 
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Source: Techniques for the automatic debugging of scientific floating point 

programs, Bailey, Demmel, Kahan, Revy, Sen, SCAN’2010, Lyon France 2010 



A Developer Scenario 

• Developer compiles app with 

tool to track accuracy, display 

results with “± n.nn” outputs 

• Discovers 95% of app only 

needs 16-bit ops; tool identifies 

5% where 32-bit needed. 

• Developer rewrites app for 16-

bit ops, removes accuracy 

tracking for production version 

• 4x speed in Ivy Bridge, more 

frames per second, less power 

throttling in large data center 

servers 

 



Outline 

• What is the problem? 

• Solutions 

– Use so many bits you can pretend there is no problem 

– Change how we model real arithmetic on computers 

– Use only the bits you need   

– Let the hardware solve the problem 

• Conclusion 



Hardware support for assured accuracy 

40 

• An Intel labs chip … supports variable precision math with uncertainty 

tracking.  Can use with software that runs at low precision, tracks accuracy 

and reruns computations automatically if the error grow too large. 

H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy, S. Borkar, “A 1.45 GHz 52-162 GFLOPR./S 

variable-0precision floating-point fused multiply-add unit with certainty tracking in 32 nm CMOS”, ICCSS, p. 182, 2012 



Computing the FMA and uncertainty 

• How does the chip define the FMA/uncertainty computation? 
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𝑂 ± ∆𝑂 = 𝐴 ± ∆𝐴 ∗ 𝐵 ± ∆𝐵 + (𝐶 ± ∆𝐶) ± ∆𝑅 

𝑂 ± ∆𝑂 = 𝐴 ∗ 𝐵 + 𝐶 + (∆𝐴 ∗ ∆𝐵  ± (𝐵 ∗ ∆𝐴 + 𝐴 ∗ ∆𝐵 + ∆𝐶 + ∆𝑅) 

• Operands A, B and C (A*B+C) with their uncertainties. ∆𝑅 is a 

rounding error. 

• Expand the above and gather terms to find O and ∆𝑂 . 

FMA “recentered” to 

account for the error term 

∆𝑂 𝑂 



A variable precision FMA with “Certainty tracking” 

42 



Outline 

• What is the problem? 

• Solutions 

– Use so many bits you can pretend there is no problem 

– Change how we model real arithmetic on computers 

– Use only the bits you need   

– Let the hardware solve the problem 

• Conclusion 



None of these ideas alone solves the problem in 

all cases, but maybe if we combined them into a 

single integrated system, we’d have a solution? 

Intel Labs 
test chip 

Accuracy fields 

attached to FP 

Automate much of the work 

of a numerical analyst 

Interval arithmetic 

made practical 

New parallel 

techniques for tight, 

rigorous bounds Hardware with built-in X±r 
accuracy tracking field 

Accuracy-

Aware 

Arithmetic 

Numbers that know 

their own accuracy 

and history 



Summary 

• We do not know if results from our floating point intensive 

applications are correct.   

– We could know … IEEE 754TM combined with good numerical 

analysis can solve the problem, but programmers don’t know 

numerical analysis and nothing suggests this will change. 

• We need to rethink how we use floating point arithmetic 

and create the right tools to support assured accuracy. 

• Assured accuracy has many benefits 

– Knowing (not guessing and hoping) that are programs are correct. 

– If we know how many bits we need, maybe we can use less … and 

less bits saves energy 

45 Third party names are the property of their owners 


