Jet Reconstruction and Triggering

Salvatore Rappoccio
JHU / FNAL
(soon to be SUNY Buffalo)
• I was asked to give this talk on Monday
• The charge:

 Broadly speaking, the aim of the talk is to give the theorists in the audience an introduction to state-of-the-art reconstruction (e.g. particle flow, techniques for dealing with high pile-up, the status of tau reconstruction) and their implications for searches. A discussion of triggering (whether focused on hadronic or more general) would also be very useful. Beyond these vague suggestions, you can define the scope of the talk however you think will do best to motivate, focus, and inform discussions about possible future analyses. The theorists in the audience will have a mix of BSM and SM expertise, and a somewhat more appetite than average for experimental details.

• I had very little time to prepare, so this is probably incomplete
• Misrepresentations are my fault alone
• I was asked to give this talk on Monday
• The charge:

Broadly speaking, the aim of the talk is to give the theorists in the audience an introduction to state-of-the-art reconstruction (e.g. particle flow, techniques for dealing with high pile-up, the status of tau reconstruction) and their implications for searches. A discussion of triggering (whether focused on hadronic or more general) would also be very useful. Beyond these vague suggestions, you can define the scope of the talk however you think will do best to motivate, focus, and inform discussions about possible future analyses. The theorists in the audience will have a mix of BSM and SM expertise, and a somewhat more appetitie than average for experimental details.

• I had very little time to prepare, so this is probably incomplete
• Misrepresentations are my fault alone

= I know a lot, could talk for hours, but won’t
= I know little
= I have little public material
Outline

• Jet reconstruction
• Particle flow
• Pileup mitigation
• Advanced techniques
• Trigger strategies
• Prospects
Jet reconstruction

- From Gavin Salam:

Parton fragmentation

Gluon emission:

$$\int \alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

At low scales:

$$\alpha_s \rightarrow 1$$

This is a jet

Gavin Salam (CERN/Princeton/Paris) Jets in SM and beyond PANIC, 28 July 2011 2 / 25
• Idea of reconstruction is to map N jets to M partons
 – Ideally, one-to-one!

• How to define “M”? LO? NLO? Something else?

• Definition of “N” is dependent on the algorithm you’re interested in
 – Also on the distance parameter!

• Different algorithms are useful for different things

• I’m often asked “What is the best kind of jet algorithm”?
 – I reply “This is like asking what is the best tool in the toolbox”
Jet reconstruction

- Not always trivial!
- More on this later
Jet reconstruction

- Most modern jet algorithms are sequential clustering algorithms
- Pairwise examination of input 4-vectors
- Calculate d_{ij}

\[d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2 \]

- Also find the “beam distance”

\[d_{iB} = k_{T,i}^n \]

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Jet reconstruction

- Most modern jet algorithms are sequential clustering algorithms
- Pairwise examination of input 4-vectors
- Calculate d_{ij}

$$d_{ij} = \min(k_{t_{ii}}^n, k_{t_{ij}}^n) \Delta R_{ij}^2 / R^2$$

- Also find the “beam distance”

$$d_{iB} = k_{T,i}^n$$

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Most modern jet algorithms are sequential clustering algorithms.

Pairwise examination of input 4-vectors:
- Calculate d_{ij}
- Also find the “beam distance” $d_{iB} = k_{T,i}^n$

Find min of all d_{ij} and d_{iB}:
- If min is a d_{ij}, merge and iterate
- If min is a d_{iB}, classify as a final jet

Continue until list is exhausted.
Jet reconstruction

- Most modern jet algorithms are sequential clustering algorithms
- Pairwise examination of input 4-vectors
- Calculate d_{ij}

\[
d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2
\]

- Also find the “beam distance”

\[
d_{iB} = k_{T,i}^n
\]

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Jet reconstruction

• Most modern jet algorithms are sequential clustering algorithms
• Pairwise examination of input 4-vectors
• Calculate d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2$$
• Also find the “beam distance”

$$d_{iB} = k_{T,i}^n$$

• Find min of all d_{ij} and d_{iB}
 – If min is a d_{ij}, merge and iterate
 – If min is a d_{iB}, classify as a final jet
• Continue until list is exhausted
Jet reconstruction

- Most modern jet algorithms are sequential clustering algorithms
- Pairwise examination of input 4-vectors
- Calculate d_{ij}

\[d_{ij} = \min(k^n_{ti}, k^n_{tj}) \Delta R_{ij}^2 / R^2 \]

- Also find the “beam distance”

\[d_{iB} = k^n_{T,i} \]

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Jet reconstruction

- Most modern jet algorithms are sequential clustering algorithms
- Pairwise examination of input 4-vectors
- Calculate d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \frac{\Delta R_{ij}^2}{R^2}$$

- Also find the “beam distance”

$$d_{iB} = k^n_{T,i}$$

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Jet reconstruction

• Most modern jet algorithms are sequential clustering algorithms
• Pairwise examination of input 4-vectors
• Calculate d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2$$

• Also find the “beam distance”

$$d_{iB} = k_{T,i}^n$$

• Find min of all d_{ij} and d_{iB}
 – If min is a d_{ij}, merge and iterate
 – If min is a d_{iB}, classify as a final jet
• Continue until list is exhausted
Jet reconstruction

- Properties depend on sequence
 - $N = 2$:
 - “k_T”
 - $N = 0$:
 - “Cambridge-Aachen” (CA)
 - $N = -2$:
 - “anti-k_T”

Cacciari, Salam, Soyez
Jet reconstruction

- Properties depend on sequence
 - $N = 2$:
 - “k_T”
 - $N = 0$:
 - “Cambridge-Aachen” (CA)
 - $N = -2$:
 - “anti-k_T”

- Clusters soft particles first
- Good for low-pt jets
- Good for jet area computation

Jet reconstruction

- Properties depend on sequence
 - $N = 2$:
 - “kT”
 - $N = 0$:
 - “Cambridge-Aachen” (CA)
 - $N = -2$:
 - “anti-kT”

- Angular information only
- Good for finding substructure!

Cacciari, Salam, Soyez
Jet reconstruction

- Properties depend on sequence
 - \(N = 2 \):
 - “kT”
 - \(N = 0 \):
 - “Cambridge-Aachen” (CA)
 - \(N = -2 \):
 - “anti-kT”

- Clusters hard particles first
- Idealized cone algorithm
- Best for jet counting

Cacciari, Salam, Soyez
Jet reconstruction

- For most analyses on CMS, use anti-kT jets
- Median-pt-per-unit-area in the event uses kT jets
 - Used for pileup computations
- For substructure, use CA jets
 - More later
Outline

- Jet reconstruction
- Particle flow
- Pileup mitigation
- Advanced techniques
- Trigger strategies
- Prospects
Classify objects into 5 categories

“Holistic” approach to reconstruction at CMS: Particle flow!
Particle Flow

- Simulation of PF composition of jets is astonishingly good!
• “Top Projections”:
 Identify objects sequentially
 – Each level is removed from previous

\[\pi \pi e \pi \gamma \pi \pi \gamma \gamma \pi \pi e \mu \]
“Top Projections”:
- Identify objects sequentially
 - Each level is removed from previous
 - Pileup is removed

Charged hadrons associated to subleading vertices are removed:
“Charged hadron subtraction”
“Top Projections”: Identify objects sequentially
- Each level is removed from previous
- Pileup is removed
- Leptons are identified

Identify “interesting” leptons: often by isolation
“Top Projections”:
- Identify objects sequentially
- Each level is removed from previous
- Pileup is removed
- Leptons are identified
- Jets reconstructed
Particle Flow

- “Top Projections”: Identify objects sequentially
 - Each level is removed from previous
 - Pileup is removed
 - Leptons are identified
 - Jets reconstructed

- What’s in the jets?
 - Charged hadrons
 - Neutrals from pileup
 - Nonisolated leptons
Outline

- Jet reconstruction
- Particle flow
- Pileup mitigation
- Advanced techniques
- Trigger strategies
- Prospects
Falls into a few categories:

- Explicit removal
- “Average” corrections
- Pileup jet ID
- Advanced techniques
Pileup Mitigation

- Explicit removal:
 - Timing selections on HCAL and ECAL signals
 - Especially useful for out-of-time pileup
 - PF CHS and other PF techniques
 - Especially useful for in-time pileup, but only for charged hadrons so far!
Pileup Mitigation

- Average corrections:
 - Offset correction:
 - Use minimum-bias data
 - Subtract linear amount of pileup per PV
 - Area correction:
 - Subtract median-\(pt\)-per-unit-area times area of the jet
Pileup Mitigation

- **Pileup jet ID**
 - **Beta\(^*\) correction**
 - Ratio of energy from leading PV to other PV’s
 - Essentially similar to CHS, but removes at per-jet level, rather than constituent level
 - Similar performance against pileup on average, but no improvement to jet energy resolution
 - **Shape information**
 - Number of constituents, energy weight, etc
 - Can be used outside of tracker volume!
• Uncertainty on JES is \(\sim 1\%-4\%\) depending on pt
• Pileup uncertainties dominate at low pt, but at high pt, no catastrophic problems
State-of-the-art PFJets

- Uncertainty on JES is ~1-4% depending on pt
- Pileup uncertainties dominate at low pt, but at high pt, no catastrophic problems

YET.
Outline

- Jet reconstruction
- Particle flow
- Pileup mitigation
- Advanced techniques
- Trigger strategies
- Prospects
Advanced pileup techniques

- In the future, we may be faced with even higher pileup than we have now
- What other techniques are out there to deal with this?
- Hot topic: Jet grooming!
 - e.g. BOOST2012 in Valencia, last week
 - http://ific.uv.es/~boost2012/

Cambridge/Aachen jet algorithm used extensively for substructure!
Advanced pileup techniques

- Different flavors of doing this:
 - Filtering: Butterworth, Davison, Rubin, Salam
 -Trimming: Krohn, Thaler, Wang
 -Pruning: Ellis, Walsh, Vermilion

Significantly reduced pileup dependence!
Boosted jets

- Heavy resonances to top, W, Z, Higgs all result in boosted topologies
- Also can help in S/B in “non-boosted” final states (Higgs analyses make significant use of this)
Boosted jets

- This kind of analysis is still in infancy
- A handful of analyses are mindful of this regime
 - Several Higgs analyses
 - ttbar (all-hadronic, semileptonic)
 - VV (all-hadronic, jet+MET, jet+dilepton)
 - boosted Z (dilepton)
 - More to come, but much more possible!
- Most other analyses assume “resolved” kinematic structure
 - This puts an UPPPER CUT on the mass of the particle you’re looking at!
- Boosted techniques need much more deployment!
 - Could have new physics hidden “in plain sight” even available for 7 TeV data, but we just aren’t sensitive because we’re not looking!
• Jet reconstruction
• Particle flow
• Pileup mitigation
• Advanced techniques
• Trigger strategies
• Prospects
Caveat:

- Many of our triggers are tailor-made per analysis
 - Very efficient for a single analysis, not very useful for others
 - Examples: H->bb, alpha_T, Razor, etc
- I’m not necessarily familiar with all of them
- I’ll go over the broad overview of what I am familiar with instead
Trigger Strategies

- **Single-jet triggers**
 - e.g. 1 PFJet, $pt > 400$ GeV

- **Multiple-jet triggers**
 - e.g. 4 PFJets, 1 b-tagged, $pt > 82, 65, 48, 35$

- **HT triggers**
 - e.g. HT > 750 GeV

- **Topological triggers**
 - e.g. “wide jet” $pt > 750$
• Two problems with hadronic triggers recently:
 – Turn-on of efficiency of PFJets (offline) wrt Calo-only Jets (online)
 – Rates increasing with pileup

• Solutions:
 – Development of fast tracking at HLT: can use PFJets at trigger level!
 • Turn-on of efficiency sharper
 – Introduce “area” correction, and use PF CHS at trigger level
 • Flattens rates with pileup

Nothing approved to show, unfortunately
• New physics needs new strategies

• Example:
 – “Semileptonic top sample” usually means “lepton + >= 3 jets”... reasonable, right?
 – This removes the most interesting part of the sample. At trigger level. Forever.
 • Luckily, so far we can survive with single-lepton triggers, but for how long will this last?
 • Will we need to “park” the most interesting parts of the sample here?
 – Maybe not so lucky with things we’re not paying attention to!
• What keeps me up at night: what if we’ve missed the new physics at the trigger level because we’ve designed triggers without accounting for “easily accessible” new physics?
Outline

• Jet reconstruction
• Particle flow
• Pileup mitigation
• Advanced techniques
• Trigger strategies
• Prospects
Prospects

• Summary of the hadronic program for the last few years: “So far, so good”
• This is due to huge amounts of effort on the part of many people at CMS
• Constant, difficult war against pileup. We’re winning. So far.
• Lots of new jet tools available
• We’re in a new physics regime, be mindful of the possible invalidity of previous assumptions about kinematics!

Many thanks to the PI for the wonderful opportunity!
• Let’s go back to our “N” partons to “M” jets mapping
• Let’s go back to our “N” partons to “M” jets mapping

• What if it looks like this?
• Let’s go back to our “N” partons to “M” jets mapping

• What if it looks like this?

• Try to cluster with fixed-size jets, and you don’t recover “N” partons!

• Does this really happen often?
Boosted jets

- Simple two-body decay kinematics
- Assume massless decay products

\[p^\mu = (E, \vec{p}) \]

\[p_1^\mu = (E_1, \vec{p}_1) \]

\[p_2^\mu = (E_2, \vec{p}_2) \]

- Assume \(E_1 \sim E_2 \)

\[m^2 \approx E^2(1 - \cos(\theta_{12})) \]

\[\cos(\theta_{12}) \approx 1 - \frac{m^2}{E^2} \]

\[\frac{m}{E} \rightarrow 0 \]

\[\frac{m}{E} \rightarrow 1 \]

\[\frac{m}{E} \rightarrow \infty \]

randomly distributed on circle

boosted

separated
• Example 2:
 – “W + 1 jet” sample
 – Previous strategy would have been prescaled in late 2011
 – Explicit awareness allowed us to save this data!