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Introduction to silicon 

• Semiconductor material 
– Used for radiation detection/imaging in 

• Particle and nuclear physics experiments 
• Space and ground-based telescopes 
• Medical applications 
• Industrial applications 
• … 

• Interacts with radiation 
– Radiation creates charge carriers  
– Electric field drifts carriers toward readout electronics 
– Signal integrated in frond-end electronics 
– Digitize integrated signal 
– Readout and store digital signal 
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Particle reconstruction in time 
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Pre-silicon era 

Si + gaseous tracking 

Si tracking+vertex+calorimetry 
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• Why detectors change  
– Interested in rare events  

• in very high energies 
• with very small uncertainties 
• with very high background 

• Need high precision 
– Very high granularity 
– low material budget 

• High particle collision rates 
– High speed electronics 
– Good background tolerance  
– Long term reliability  
– Radiation hardness 

 



Gaseous vs silicon detectors 

Property Gas Silicon Importance 

Density Low 2.33 g/cm3 Denser -> better 
spatial resolution 

Charge electrons and ions electrons and holes  

Ionization energy 30eV per e- ion pair 3.6 eV per e- hole pair Lower -> better 
energy resolution 

Mobility 10 ns to 10 μs few ns to 20 ns Faster -> no dead 
time 

Signal-to-noise Low High  Reliable signal 
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• In silicon detector 
• No multiplication  signal amplification needed 

• Optimum thickness to minimize multiple scattering 



Vertex reconstruction 
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Outer Si  layer 

Inner Si layer 
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R2 

Outgoing particle 

Primary vertex 
Impact parameter 
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CMS pixel detector 
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Forward Pixel Barrel Pixel 



Silicon detectors in HEP 
• In HEP experiment  

• Vertex reconstruction 
• Fast detection and position resolution 
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Experiments with silicon detector 

E. Do Couto e Silva, Vertex 2000, Sept 10-15, National Lakeshore, MI, USA 



Why silicon? 
 2nd most abundant element in Earth (28% by mass) 
 Easy to process and purify to 0.001 ppb 
 Natural SiO2 as insulation during fabrication  
 Found in form of silicate minerals and SO2 (silica – sand) 
 Discovered in 1824 by Swedish chemist J.J. Berzelius   
 Commercially utilized since 1824 

Silicon powder 

Silicon crystal 

Spectral lines of Silicon 
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Silicon - 14Si28 
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Basic properties – Band gap 
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Conduction band 

Valance band 
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Basic properties 

• Very pure material 

• Charge carriers are created by 

– thermal, optical, and other excitations or ionization 

• Four valance electrons (covalent bonds) 

• Silicon (Si) and Germanium (Ge) are common 

• Doped with extrinsic semiconductors 

– N-type: excess electrons (e- donor), i.e. P, As etc. 

– P-type: excess holes (e- acceptor), i.e. Al, B, Ga, etc. 
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Silicon PN-junction 
• Silicon detector are in basic form of PN-junction 

N-doped silicon P-doped silicon 

N-type: Phosphorus 
P-type: Boron 
Eg : Band gap (1.12 eV) EF 

EC 

EV 

EF 

Conduction band Conduction band 

Valance band Valance band 

Eg 

- 

Si Si Si 

Si Si 

Si Si Si 

Si Si 

+ 

Si 

Si Si 

Si Si Si 

Si Si 

12 

Donor impurity Acceptor impurity 

Excess electron Excess hole 



Silicon pn-junction formation 

Carrier  
concentration 

Charge density 
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NA: # of acceptor impurities 
ND: # of donor impurities 
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PN-junction bias schemes 
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WF : depletion width at forward bias 
WR : depletion width at reverse bias 
WE : depletion width in equilibrium 
 
  WF < WE < WR 

 
Reverse bias scheme is used for silicon 
detectors in HEP 
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A real life case 
• Larger active area provided by n(p)-type subtstrate 
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Depletion with 

Resistivity 

Depletion voltage 

Effective doping concentration 
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PN-junction current 

Current 

Voltage 

Forward current 

Reverse current 
(leakage) 

Vbreakdown 

Avalanche current 
 

IPN α T3/2 exp[-Eg/2kBT] 
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Leakage current 
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Current α T3/2 exp[-Eg/2kBT] 



Breakdown voltage 
• Extracted from capacitance measurements 
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Charge collection 
• Carriers are drifted under the electric field 
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μe- = 1500 cm2/Vs μh = 450 cm2/Vs 

• Total drift time for a carrier created at depth x 

VB  = applied voltage 
VFD = full depletion voltage 
d    = detector thickness 

• Maximum drift time (VB >> VFD) 

For d = 300 μm  



Radiation detection 
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Ionization energy loss: 

• Ionization loss follows Landau statistics 
• Average energy loss is 390 eV/μm of Si 
• Average charge is 108 e-h/μm of Si 
• Most probable charge 80 e-h/μm of Si 

• 24 ke in 300 μm thick Si 

Most ionizing particle = Landau MP  



Signal-to-Noise (S/N) 
• Signal is Landau, noise is Gaussian 
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Landau+Gaussian fit 

• Ionization energy loss follows  
  Landau statistics  
• Random electronic noise centered  
  at zero is Gaussian 

Most probable signal 

Noise 
= S/N  



Charge vs applied bias 

• Collected charge increases until full depletion is 
reached 
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Silicon wafer fabrication 
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• Hyper-pure polysilicon chunks 
• Melt and add impurity to make 
       n-type (P) or p-type (B) 
• Pour into a mold to make a  
      polysilicon cylinder 
• Melt onto a mono-crystal silicon 
      seed by means of RF power 
• Seed and melted polysilicon 
      rotations are opposite to grow a 
      round shape mono-crystal ingot 
• Employ a grindwheel to form the 
      ingot into a desirable diameters 
• Cut ingot into wafers by means 
       multi-wire-sawing 
• Lapping to flatten wafers 
• Chemical etching to smoothen  
      wafers 
• Edge rounding for wafer robustness     



Device processing 
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Principle of operation 
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1. Preamplifier: amplifying small sensor signal 

2. Pulse shaper: improving signal-to-noise ratio by filtering signal and 
attenuating electronic noise 

3. Analog-to-Digital Converter (ADC) 

4. Buffer: Store data 

        Front-end electronics add noise to signal (smearing). Low noise 
readout is essential 



A silicon strip detector 
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Strip sensor Readout electronics 

Wire bond (SEM image) 

Wire bonds Wire bond  
mechanism 



Position resolution 
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Position resolution 
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Binary spatial resolution 

Charge interpolated spatial resolution  



Microstrip detectors (1D) 
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Silicon drift detector (SSD) 
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ALICE SSD module 



Double-side strip detector 
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Pixel detector 
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CMS BPIX module 

CMS barrel pixel detector  



Detector topology 
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Marco Battaglia 

Marco Battaglia, EDIT 2012, Silicon Track, February 2012 
 



Radiation damage 
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Radiation damage 
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Recoil after 1 MeV neutron collision 

Radiation induced damages 
• cause severe signal losses across  
  sensor thickness 
Signal loss can be covered partially 
• by increasing high voltage 
But high voltage 
• degrades the position resolution  



Radiation damage effects 

• Leakage current increases ΔI = α Φ V 
– ΔI change in current in volume V 
– α is damage constant 
– Φ is time-integrated radiation flux 

• Depletion voltage increases  
    VFD = q|Neff|d2 /2εε0 

– Neff = |Ndonor-Nacceptor| 
– εε0 permittivity 
– d is sensor thickness 

• Charge collection degrades 
• Position resolution degrades 
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Radiation damage – leakage current 
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Radiation damage - VFD 
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Radiation damage – charge collection 
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Radiation damage – S/N 
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Radiation damage – spatial resolution 
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Radiation harder approaches – 3D 
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PLANAR: 3D: 

•  p+ and n+ electrodes are arrays of  columns that penetrate into the bulk 

•  Lateral depletion 

•  Charge collection is sideways 

•  Superior radiation hardness due to smaller electrode spacing: 

       - smaller carrier drift distance 

       - faster charge collection 

       - less carrier trapping 

       - lower depletion voltage 

•  Higher noise 

•  Complex, non-standard processing           

SEM picture of 3D electrodes 



Radiation harder approaches – 3D 
4E Configuration 
n+ (readout) p+ (bias) 
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COMPLEXITY – CMS Tracker 
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