

Introduction to silicon

- Semiconductor material
 - Used for radiation detection/imaging in
 - Particle and nuclear physics experiments
 - Space and ground-based telescopes
 - Medical applications
 - Industrial applications
 - ...
- Interacts with radiation
 - Radiation creates charge carriers
 - Electric field drifts carriers toward readout electronics
 - Signal integrated in frond-end electronics
 - Digitize integrated signal
 - Readout and store digital signal

Particle reconstruction in time

1970s

1990s

2010s

time

Why detectors change Interested in rare events in very high energies with very small uncertainties with very high background Need high precision Very high granularity low material budget High particle collision rates High speed electronics Good background tolerance Long term reliability Radiation hardness

Pre-silicon era

Gaseous vs silicon detectors

- In silicon detector
 - No multiplication \rightarrow signal amplification needed
 - Optimum thickness to minimize multiple scattering

Property	Gas	Silicon	Importance
Density	Low	2.33 g/cm ³	Denser -> better spatial resolution
Charge	electrons and ions	electrons and holes	
Ionization energy	30eV per e- ion pair	3.6 eV per e- hole pair	Lower -> better energy resolution
Mobility	10 ns to 10 μs	few ns to 20 ns	Faster -> no dead time
Signal-to-noise	Low	High	Reliable signal

Vertex reconstruction

CMS pixel detector

Silicon detectors in HEP

- In HEP experiment
 - Vertex reconstruction
 - Fast detection and position resolution

Experiments with silicon detector

Why silicon?

- 2nd most abundant element in Earth (28% by mass)
- Easy to process and purify to 0.001 ppb
- Natural SiO₂ as insulation during fabrication
- Found in form of silicate minerals and SO₂ (silica sand)
- Discovered in 1824 by Swedish chemist J.J. Berzelius
- Commercially utilized since 1824

Silicon powder

Silicon crystal

Spectral lines of Silicon

8

Silicon - ₁₄Si²⁸

	GROUP		PE	ERI	OD	OIC	TA	BL	ΕC	DF	TH			M	EN	ГS			
	1 IA				~	~	77	$\overline{77}$	77	$\Box \Box \Box$		\leq	http	://www.ktf-	split.hr/per	iodni/en/		18 VIIIA	
Q	1 1.0079	9 RELATIVE ATOMIC M				MIC MASS (I)													-
-21	H	GROUP IUDAC																	
Ы	HYDROGEN	2 11A 13				IIIA		Alkaline earth metal		17 Haloos	17 Halogens element			13 IIIA 14 IVA 15 VA 16 VIA 17 VII					_
	3 6.941	4 9.0122	ATOMIC N		R 5 10.811			Transition metals		18 Noble gas			5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	
2	Li	Be SYMBOL B		/ /	Lanthanide STAND/			ARD STATE (25 °C: 101 kPa)			В	С	N	0	F	Ne			
	LITHIUM				BORON				Actinide Ne -		- gas Fe - solid		BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	
	11 22.990	12 24.305	/	EI E		/	/	·/	Ga	- liquid	To - synthe	tic	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	1
3	Na	Mg		ELC.				/					Al	Si	P	S	Cl	Ar	
	SODIUM	MAGNESIUM	3 111B	4 IVB	5 / VB	6 /VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	-
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	P
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)					
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	IBh	IHIS	Mit	Uum	Uuu	Uub		Uuq					
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM				<u> </u>		- SA	
	/		/												2770				
(1) Pure And Chem. 73 No. 4 667-683 (2001)				57 129 01	DE 140.12	50 140.01	60 144.24	60 444 04 61 4440 62 450 00 1		63 151 06	(2 101 00 64 100 00 65 100		66 162 50	67 164 02	Copyright © 19		98-2003 EniG (eni@ktf-split.hr)	ì
Rela	ative atomic m	ass is shown	with five	J/ 130.91	50 140.12	D	NI J	101 (145)	G	17	C J	05 156.95	D	UT 104.93	00 107.20	T	X7L	T	K
nuclides, the value enclosed in brackets indicates the mass number of the longest-lived		La	Ce	Pr	ING	161001	Sm	Eu	Ga	ID	Dy	HO	Er	Im	YD	Lu			
isotopo of the element. However three such elements (Th, Pa, and U) do have a characteristic terrestrial isotopic composition, and for these an atomic weight is			LANTHANUM CERIUM PRASEODYMUM NEODYMUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM LUTETIL											LUTETIUM	1				
			89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	1	
tabu	lated.			Ac	Th	Pa	II	NID	1Pnn	Am	Cim	IBIL	CF	TR.e	IRTIM	Md	No	TT .TP	
E .***		a ladin	tion april	ACTINIUM	THORILIN	PROTACTINI	URANIUM	NERTINUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM		FINSTEINI	FERMUM	MENDELEVIL	NOBELIUM		9
Edit	or, Aditya vardhi	n (aorvar@net	unix.com)		THUR DOWN		orvenom	TO TOTION	- coroniom	Participation of the	CONTON	our new own	or an or	En lo ren lo m	- www.wii	THE REAL PROPERTY OF	TODELION I	DITTEROION	4

Basic properties – Band gap

Insulator

Semiconductor

Conductor

Basic properties

- Very pure material
- Charge carriers are created by

- thermal, optical, and other excitations or ionization

- Four valance electrons (covalent bonds)
- Silicon (Si) and Germanium (Ge) are common
- Doped with extrinsic semiconductors
 - N-type: excess electrons (e- donor), i.e. P, As etc.
 - P-type: excess holes (e- acceptor), i.e. Al, B, Ga, etc.

Silicon PN-junction

• Silicon detector are in basic form of PN-junction

Silicon pn-junction formation

N_A: # of acceptor impurities N_D: # of donor impurities

PN-junction bias schemes

A real life case

• Larger active area provided by n(p)-type subtstrate

PN-junction current

Leakage current

Current $\alpha T^{3/2} \exp[-E_g/2k_BT]$

Breakdown voltage

Extracted from capacitance measurements

Charge collection

- Carriers are drifted under the electric field $v_{e,h}(x) = \mu_{e,h} E(x) \qquad \mu_{e^{\text{-}}} = 1500 \text{ cm}^2 \text{/Vs} \quad \mu_{h} = 450 \text{ cm}^2 \text{/Vs}$
- Total drift time for a carrier created at depth x

$$t(x) = \frac{d^2}{2\mu V_{FD}} ln \left(\frac{V_B - V_{FD}}{V_B - V_{FD} + 2V_{FD}(1 - x/d)} \right)$$

$$V_{B}$$
 = applied voltage
 V_{FD} = full depletion voltage

Maximum drift time (V_B >> V_{FD})

$$t_{\rm max} = t(x=0) = \frac{d^2}{2\mu V_{\rm B}}$$

For d = 300 μm **→**

Radiation detection

Ionization energy loss:

Signal-to-Noise (S/N)

Signal is Landau, noise is Gaussian

Charge vs applied bias

Collected charge increases until full depletion is reached

Silicon wafer fabrication

- Hyper-pure polysilicon chunks
- Melt and add impurity to make n-type (P) or p-type (B)
- Pour into a mold to make a polysilicon cylinder
- Melt onto a mono-crystal silicon seed by means of RF power
- Seed and melted polysilicon rotations are opposite to grow a round shape mono-crystal ingot
- Employ a grindwheel to form the ingot into a desirable diameters
- Cut ingot into wafers by means multi-wire-sawing
- Lapping to flatten wafers
- Chemical etching to smoothen wafers
- Edge rounding for wafer robustness

Device processing

Principle of operation

- 1. Preamplifier: amplifying small sensor signal
- 2. Pulse shaper: improving signal-to-noise ratio by filtering signal and attenuating electronic noise
- 3. Analog-to-Digital Converter (ADC)
- 4. Buffer: Store data

Front-end electronics add noise to signal (smearing). Low noise readout is essential

25

A silicon strip detector

Position resolution

Position resolution

Microstrip detectors (1D)

Silicon drift detector (SSD)

Double-side strip detector

Pixel detector

CMS BPIX module

CMS barrel pixel detector

Detector topology

2D segmented Si

2D segmented Si attached to 2D segmented Si

2D segmented Si attached to 1D segmented Si or other electronics

Marco Battaglia, EDIT 2012, Silicon Track, February 2012

Radiation damage

nuclear particle (i.e. p,n etc.) collides with a lattice atom,
 the lattice atom is kicked out from it position leaving behind a vacancy
 the displaced atom can collide others creating more interstitial positions (clusters)

an energetic nuclear particles knocks out an atom resulting Frenkel pairs (defects)
above 150 K 90 % of pairs recombined (thermal vibrations in lattice)

Radiation damage

Recoil after 1 MeV neutron collision

Radiation induced damages

 cause severe signal losses across sensor thickness

Signal loss can be covered partially

- by increasing high voltage
 But high voltage
- degrades the position resolution 35

Radiation damage effects

- Leakage current increases $\Delta I = \alpha \Phi V$
 - $-\Delta I$ change in current in volume V
 - $-\alpha$ is damage constant
 - $-\Phi$ is time-integrated radiation flux
- Depletion voltage increases

$$V_{FD} = q | N_{eff} | d^2 / 2\epsilon\epsilon_0$$

$$- N_{eff} = |N_{donor} - N_{acceptor}|$$

- $-\epsilon\epsilon_0$ permittivity
- d is sensor thickness
- Charge collection degrades
- Position resolution degrades

Radiation damage – leakage current

$$\alpha = \frac{\Delta I}{V \cdot \Phi}$$

- $lpha\,$ damage rate
- Φ fluence
- $\Delta \mathrm{I}$ leakage current
- V volume (0.018 cm³)

Radiation damage – charge collection

Radiation damage – S/N

signal (S) is the MP value of the Landau fit

noise (N) is from the noise test

Radiation damage – spatial resolution

overall resolution (RMS) decreases with irradiation

Radiation harder approaches – 3D

- p+ and n+ electrodes are arrays of columns that penetrate into the bulk
- Lateral depletion
- Charge collection is sideways
- Superior radiation hardness due to smaller electrode spacing:
 - smaller carrier drift distance
 - faster charge collection
 - less carrier trapping
 - lower depletion voltage
- Higher noise
- Complex, non-standard processing

Radiation harder approaches – 3D

COMPLEXITY – CMS Tracker

References

- Sze, Physics of semiconductor devices, 2nd Edition
- Helmuth Spieler, Semiconductor Detector Systems
- Olaf Steinkamp, Experimental Methods of Particle Physics, 2011
- Enver Alagoz, Simulation and beam test measurements of the CMS pixel detector, PhD Thesis, 2009
- Daniela Bortoletto, An introduction to semiconductor detectors, Vienna Conference, VCI 2004