

The New Heliostat System at PMOD/WRC

Markus Suter PMOD/WRC, Davos

Outline

- 1. Why a new Heliostat
- 2. Site Evaluation
- 3. Design Considerations / Technical Issues
- 4. Current Design Status
- 5. Timeline/Outlook

Renovation of the Institute Building

Physikalisch Meteorologisches Observatorium Davos (PMOD) World Radiation Center

since 1907

Renovation of the building 2010-2012

Old Heliostat was removed

Why a new Heliostat?

- Replacement of the old heliostat ->sunlight in the new clean room
- The radiometry community needs a high quality light source for the characterisation of absolute radiometers, in addition to existing laser facilities (TRF).
 - Only the sun can provide the right beam geometry for stray light experiments.
 - The Heliostat beam has a broad band, solar like spectrum instead of just one wavelength

Site Evaluation

Close to Lab vs. view of the sun

Position at south east face (cut at Az 213) will loose only 15 % of possible data

Design considerations

- Optimize the field of view as seen from the laboratory
- Optimize incidence angle (mirror surface)
- Optimize for "continuous" motion
- Avoid singularities in system coordinates

=>Design with a 27 deg tilted axis tracking mirror (looking upwards) fixed mirror (looking downwards yields a horizontal beam.

Tracking and Motion

- Motor: Stepper with harmonic drive Gearbox
- 19 bit Encoder for rough positioning
- Sun sensor for active tracking
- CAN-bus
- Control software in matlab

Examples Field of view

 Field of view optimized for PMO6 Radiometer (short distances and good incidence angle)

FoV seen from the Lab (2.5 m behind secondary mirror)

The Mirrors

- 650 mm diam
- 100 mm thickness
- Aluminium coated Zerodur (Ceramic)
- Flat to 25 nm rms (manufacturing)
- No focussing effects!
- Special mounting is needed to compensate for self gravity deformation

Mounting of the mirrors

- Triple Tripod system to mount the primary mirror.
- Gravity compensation included in shape of the secondary mirror (~300 nm)

Current Status

Current Status of the Project:

Mirror Frames: Design completed (In House)

Secondary Mirror Mounting: — Design by an external Company

Tracking Mirror Mounting and Motion Control: Design in House

Mirrors are in the fine grinding process

Software prototype is written

Timeline / Outlook

- 2011: Baseline Design, Site Evaluation Fundraising (SNF, BBL & anonymous sponsor)
- 2012: Final Design, Manufacturing, First Installations
- 2013 Final Installation, Commissioning Characterisation Experiments of the DARA absolute radiometer

The New Heliostat System at PMOD/WRC

Thank you for your attention!

And Thanks to all the contributors of the project!

Markus Suter PMOD/WRC, Davos

