Data analysis and simulations for GERDA Doktorandentag 2012

Giovanni Benato

University of Zurich

28.08.2012

Table of contents

The Double Beta Decay

The GERDA Experiment

Analysis of Calibration Data

Simulations of Calibrations

The Double Beta Decay

2υ2β dN/dE 0υ2β

Energy scheme for the double decay

 $2\nu 2\beta$ and $0\nu 2\beta$ theoretical spectra

Two neutrino double beta decay $(2\nu 2\beta)$

- Visible if single beta decay energetically forbidden;
- Experimental signature: continuum from 0 to the Q-value.
- ▶ Measured in some dozen of isotopes, halflives $> 10^{18}$ years.

Neutrinoless double beta decay $(0\nu2\beta)$

- Forbidden by the Standard Model, violates the lepton number conservation.
- **Possible only if neutrinos are Majorana particles, i.e.** $u = \bar{\nu}$
- ► Signature: spectral peak at the Q-value.
- ▶ Halflives $> 10^{23}$ years.

The Double Beta Decay

The GERDA experiment

- ► GERDA = **Ger**manium **D**etector **A**rray
- ▶ Goal: search for $0\nu2\beta$ decay in $^{76}\mathrm{Ge}$.
- Strategy: enriched germanium crystals as both source and detector.

- ► Located at the Gran Sasso Laboratory under 3800 meter of water equivalent
- Multi-layered shield: water tank, copper, Liquid Argon (LAr)
- Ge detectors immersed naked in LAr

GERDA Phase I

- ▶ 18 kg of Ge detectors previously used in other experiments
- ▶ Background Index (BI) 10^{-2} counts/(keV · kg · yr)
- ▶ Sensitivity: $\langle m_{\beta\beta} \rangle \leq 0.23 0.39 \text{ eV}$;
- $\left(T_{1/2}^{0\nu2\beta}\right)^{-1} = F|M|^2 \langle m_{\beta\beta} \rangle^2$ $T_{1/2}^{0\nu2\beta} \ge 2 \cdot 10^{25} \text{ yr}$

GERDA Phase II

- ▶ Add 20 25 kg of new generation Broad Energy Germanium detectors (BEGe);
- ▶ BI $\simeq 10^{-3}$ counts/(keV · kg · yr);
- ▶ 100 kg · yr exposure;
- ▶ Sensitivity: $\langle m_{\beta\beta} \rangle \leq 0.09 0.15 \text{ eV}$;
- $T_{1/2}^{0\nu2\beta} \ge 1.5 \cdot 10^{26} \text{ yr.}$

Experimental spectrum taken by GERDA in the first 7 months of Phase I

First results of GERDA

- ▶ 9 kg · yr exposure (since November 2011);
- ▶ BI = $2 \cdot 10^{-2}$ counts/(kev · kg · yr);
- BI improvable with application of Pulse Shape Discrimination;
- Energy spectrum blinded in the [2019 2059] keV;
- $T_{1/2}^{2\nu2\beta} = 1.88 \pm 0.10 \cdot 10^{21}$ years (PRELIMINARY)

Analysis of calibration data

- ▶ Problem: complex experiment → possible instabilities (long cables, temperature variations, ...)
- ▶ Solution: pulser monitoring + bi-weekly calibrations with ²²⁸Th source

Calibration procedure in GERDA

- ▶ 3 calibration sources lowered from above to the vicinity of the detectors
- ▶ 2 − 3 hour exposure
- ▶ Calibration run taken after each modification in the setup or any hint of instability given by the pulser
- ▶ Need to perform the data analysis as soon as possible not to lose physics data!

- ► Fully automatic script was developed to analyze the calibration data
- Output: calibration curves, resolution curves, parameters for quality cuts
- Calibration parameters also used to study stability properties

Calibration curve extracted from a ²²⁸Th spectrum

Residuals of the peaks from a 2nd degree polinomial

Resolution as function of energy

Resolution as function of time for all the GERDA detectors

Simulations of calibrations

Aim of simulations

- Cross check the Majorana-GERDA simulation framework (MAGE)
- Estimate detector positions in **GERDA**
- Estimate ratio of Single Site Events (SSE) vs Multi Site Events (MSE) for Pulse Shape Analysis
- Estimate thickness of detector. deadlayers
- Estimate best sources configuration for Phase II

MC.

- ► Simulate only gamma emitters of Thorium chain: ²¹²Pb, ²¹²Bi, ²⁰⁸Tl
- ► Simulate 10⁷ events for each isotope
- Merge simulated spectra according to the branching ratios
- Smear simulated spectra according to detector energy resolution

Data

- Use calibration data taken only with one of the three sources
- Select data taken when the sources are not moving

Sum of simulated spectra

Spectra of all the simulated isotopes of the ²²⁸Th chain and their weighted sum

Comparison of data and MC

Experimental and simulated calibration spectra normalized in the 100 - 3000 keV region.

- Good agreement above 300 keV
- Disagreement at low energy → Deadlayer effect? Further investigation needed...

conclusion

