SEARCH FOR SUPERSYMMETRY IN HADRONIC FINAL STATES WITH M_{T2} WITH THE CMS DETECTOR

Hannsjörg Weber (ETH Zürich)

Supersymmetry

- Supersymmetry (SUSY) is a possible extension of the standard model (SM):
 - For each SM particle there is at least one supersymmetric partner particle (sparticle) differing only in spin by ½:

$$Q_{\alpha} | \text{fermion} \rangle = | \text{boson} \rangle$$
 $Q_{\alpha} | \text{boson} \rangle = | \text{fermion} \rangle$

- (*) Actually two Higgs doublets needed
- → five Higgs bosons
- The degrees of freedom and couplings for particles and sparticles are the same.
- Due to SUSY breaking the masses of these superpartners become much larger than those of the SM particles.

Supersymmetry

- Supersymmetry (SUSY) has several nice features:
 - The enlarged particle spectrum stabilizes e.g. the Higgs mass and therefore solves the hierarchy problem between electroweak (10² GeV) and Planck (10¹⁹ GeV) scale.
 - SUSY allows for grand unification of forces (strong and electroweak forces).
 - In many scenarios sparticles have to be produced in pairs.
 - The lightest sparticle (LSP) is weakly interacting and stable → dark matter candidate.

Hadronic supersymmetry

- Why searching for SUSY in fully hadronic channel (i.e. with no leptons) at the LHC?
- Only rely on strong production of gluinos and squarks → highly sensitive
- If SUSY comes with a stable sparticle this will not be observed by the CMS detector
 Large missing transverse momentum E_T^{miss}.
- Therefore we can motivate a search based on two variables:

$$H_T = \sum_{jets} |\vec{p}_T| \qquad E_T^{miss} = -\sum_{particles} \vec{p}_T$$
 Hadronic activity — Missing transverse momentum

- Think about clever kinematical variables reflecting these properties:
 - > One possible idea: (M_{T2}) (other existing variables: Razor, α_T , M_{eff} , ...)

The search variable M_{T2}

- Discovery of W-boson in UA1 (1983)
 - in the decay W(ev), the mass of the W boson is accessible via its transverse projection M_T .
 - M_T has an endpoint at the true W-mass.
- In events involving sparticles expect two decay chains with unobserved particles c₁ and c₂

$$\mathbf{M}_{T2}(\mathbf{m}_{c}) = \min_{\vec{p}_{T}^{c(1)} + \vec{p}_{T}^{c(2)} = \vec{p}_{T}^{miss}} \left[\max \left(\mathbf{M}_{T}^{(1)}, \mathbf{M}_{T}^{(2)} \right) \right]$$

- M_{T2} is a generalization of the transverse mass M_T with one unobserved particle for each chain.
 - If the child mass m_c is known M_{T2} would have an endpoint at the parent mass.

Interpretation of M_{T2}

In case of no initial state radiation and zero masses

$$\mathbf{M}_{T2}^2 = 2p_{\mathrm{T}}^{(1)}p_{\mathrm{T}}^{(2)}(1+\cos\phi_{1.2})$$

 $p_{\rm T}^{(i)}$: the transverse momenta of the visible systems.

- $M_{T2} \approx E_T^{miss}$ for symmetric systems: $(E_T^{\text{miss}})^2 = (p_T^{(1)} - p_T^{(2)})^2 + 2p_T^{(1)}p_T^{(2)}(1 + \cos\phi_{12})$
- $M_{T2} = 0$ GeV for back-to-back systems
- M_{T2} is similar to E_T^{miss} in search region,
- more robust against jet energy mismeasurements than E_T^{miss} .
- Multijet events are divided into a 2 pseudo-jet topology using a hemisphere algorithm.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Analysis strategy

Baseline selection

 $H_T \ge 750 \text{ GeV}$ electron and muon veto filters against detector noise

Two channels

M_{T2} analysis

At least 3 jets $min\Delta\phi(jets, E_T^{miss}) > 0.3$ $M_{T2} > 150 \text{ GeV}$ sensitive to high/medium squark and gluino masses

sensitive to light gluinos with heavy squarks

M_{T2}b analysis

At least 4 jets At least one jet b-tagged $min\Delta\phi(j_1-j_4, E_T^{miss}) > 0.3$ $M_{T2} > 125 \text{ GeV}$

Analysis strategy

- This analysis uses shape information in the search variables M_{T2} and H_T by using exclusive bins:
- For the M_{T2} analysis we define two H_T bins and five M_{T2} bins, with lowest bin starting at $M_{T2} > 150$ GeV.
- For the $M_{T2}b$ analysis we define two H_T bins and four M_{T2} bins, with lowest bin starting at $M_{T2} > 125$ GeV.

- These exclusive bins are combined in a likelihood.
- \rightarrow Including this shape information increases sensitivity to larger phase spaces where signal does not only show up in the tail of the M_{T2} distribution.

Backgrounds

M_{T2} analysis

QCD multijets W+jets, Z+jets minor: Top

M_{T2}b analysis

QCD Top multijets minor: W+jets, Z+jets

Backgrounds: Estimations

- QCD multijets have no genuine E_T^{miss} \rightarrow small M_{T2} .
- Mismeasured jets can lead to larger M_{T2} . These jets are aligned with E_T^{miss} . Use correlation of min $\Delta \phi$ (jets, E_T^{miss}) and M_{T2} to predict this very small background.
- **Z** bosons decaying into neutrinos are signal like with large E_T^{miss} .
- This background is predicted by using photon + jets and $W(\rightarrow \mu \nu)$ +jets events.
- The visible vector boson p_T is added to the E_T^{miss} to mimic $Z(\rightarrow vv)$ +jets events.
- Leptonic W+jets and Top+jets events have real E_T^{miss}. Largely reduced due to lepton veto.
- Enter signal region if electrons or muons is not reconstructed or out of acceptance (= is *lost*), or taus decaying into hadrons.
- Estimate from one lepton sample and probability of reconstructing respective *loosing* a lepton.

Robust estimation of the SM background contribution to all signal bins.

Example: W+jets and tt+jets

- W+jets and Top+jets events have real E_T^{miss}, if W decays leptonically. Enter our event selection if
 - an electron and muon is not reconstructed or out of acceptance (= is *lost*),
 - taus decaying into hadrons.
- The *lost* leptons are estimated from the one lepton sample and the probability of identifying a produced lepton: ε

$$egin{array}{lcl} N_{e,\mu}^{pass \; veto} &=& (N_{e,\mu}^{reco} - N_{e,\mu}^{bg}) rac{1}{arepsilon_{e,\mu}} - (N_{e,\mu}^{reco} - N_{e,\mu}^{bg}) \ &=& (N_{e,\mu}^{reco} - N_{e,\mu}^{bg}) rac{1-arepsilon_{e,\mu}}{arepsilon_{e,\mu}} \end{array}$$

• The amount of background due to hadronically decaying taus are validated by tau-tagging.

Due to low statistics taken from simulation.

Results: M_{T2} analysis

- The background estimates for the M_{T2} analysis are summarized here.
- Shaded region is uncertainty on the background estimation.
- Data of 2011 pp collisions at 7 TeV collected by CMS, corresponding to 4.73 fb⁻¹.
- A possible SUSY signal is overlaid to show sensitivity of search region.

Results: M_{T2}b analysis

- The background estimates for the $M_{T2}b$ analysis are summarized here.
- Shaded region is uncertainty on the background estimation.
- Data of 2011 pp collisions at 7 TeV collected by CMS, corresponding to 4.73 fb⁻¹.
- A possible SUSY signal is overlaid to show sensitivity of search region.

- The results are interpreted in a full SUSY model constrained to five parameters.
 - In the plane below three of those parameters are fixed: $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$

- The analyses are also interpreted in simplified models.
 - Models are reduced to one SUSY decay chain only.
- Other model interpretations are in the back-up.

Summary

- A search for supersymmetry in fully hadronic final states in 2011 pp collision data collected by the CMS detector has been performed.
- No excess over the predicted background has been found.
- Limits in various signal model spaces have been set.

• For more details:

arXiv:1207.1798

Backup

Backgrounds: QCD multijets

- Multijet events have no genuine E_T^{miss} . However, mismeasured jet energies can lead to larger E_T^{miss} and M_{T2} .
- Mismeasured jets are aligned with E_T^{miss}.

• Use correlation of min $\Delta \phi$ (jets, E_T^{miss}) and M_{T2} to predict amount of background

due to mismeasured jets.

$$\frac{N(\min \Delta \phi(\text{jets,}E_{\text{T}}^{\text{miss}}) > 0.3)}{N(\min \Delta \phi(\text{jets,}E_{\text{T}}^{\text{miss}}) < 0.2)} = e^{a-b \cdot M_{T2}} + c$$

Backgrounds: $Z(\rightarrow v\bar{v})$ +jets

- Z bosons decaying into neutrinos are signal like with large E_T^{miss}.
- Two methods have been developed to predict this background using photon + jets or $W(\rightarrow \mu \nu)$ +jets.
- In both method the visible vector boson p_T is added to the E_T^{miss} , and the relevant event quantities (like M_{T2}) are recalculated.
- The event yield is scaled by cross section ratio and corrected for reconstruction efficiencies/kinematical differences.

- The analyses are also interpreted in simplified models.
 - Models are reduced to one SUSY decay chain only.

- The analyses are also interpreted in simplified models.
 - Models are reduced to one SUSY decay chain only.

- The analyses are also interpreted in simplified models.
 - Models are reduced to one SUSY decay chain only.

Advantages of M_{T2} over E_T^{miss}

• Taking $E_T^{miss} > 300 \text{ GeV}$:

The CMS detector

JINST 03 (2008) S08004

SUSY spectrum

26

Running of sparticle masses

• Running of sparticle masses in mSugra/cMSSM due to renormalization group equation.

Solving hierarchy problem

- Fermion masses have only mild divergences due to loops
- Scalar masses (e.g. Higgs mass) have quadratic divergences due to loops.

$$\mathcal{L}_1 = \bar{\psi}(i\partial \!\!\!/ - m_F)\psi + \frac{1}{2}(\partial_\mu S)^2 - \frac{1}{2}m_S^2 S^2 - \frac{\lambda_F}{2}\bar{\psi}\psi S$$

$$\delta m_F = -\frac{3\lambda_F^2 m_F}{64\pi^2} \log \frac{\Lambda^2}{m_E^2} + \cdots$$

$$\delta m_F = -\frac{3\lambda_F^2 m_F}{64\pi^2} \log \frac{\Lambda^2}{m_F^2} + \cdots$$

$$\delta m_S^2 = -\frac{\lambda_F^2}{8\pi^2} \left[\Lambda^2 - m_F^2 \log \frac{\Lambda^2}{m_F^2} \right] + \cdots$$

Taken from lecture of M.Spira

Solving hierarchy problem

- Due to new sparticles a secondary loop diagrams are added.
- These cancel the quadratic divergences if masses of sparticle and SM particle are not too different.

$$\mathcal{L}_2 = |\partial_{\mu}\phi_1|^2 + |\partial_{\mu}\phi_2|^2 + \frac{\lambda_S}{2}S^2(|\phi_1|^2 + |\phi_2|^2)$$

$$-m_{\phi}^{2}(|\phi_{1}|^{2}+|\phi_{2}|^{2})$$

$$\delta m_S'^2 = +\frac{\lambda_S^2}{8\pi^2} \left[\frac{\Lambda^2 - m_\phi^2 \log \frac{\Lambda^2}{m_\phi^2}}{1 + \cdots} \right] + \cdots$$

$$(\pm = \text{Pauli-Prinzip})$$

SUSY:

FG: 2 ferm.
$$\leftrightarrow$$
 2 bos. $\delta m_S^2 \sim \frac{\lambda_S^2}{8\pi^2} (m_F^2 - m_\phi^2) \log \Lambda^2$

Taken from lecture of M.Spira

Unification of forces

Unification of the Coupling Constants in the SM and the minimal MSSM

U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) $lpha_1, lpha_2, lpha_3$ coupling constants of electromagnetic –, weak–, and strong interactions $1/lpha_{\mathbf{i}} \propto \log \mathbf{Q^2}$ due to radiative corrections (LO)

B-Tagging

• B-Tagging is based on reconstruction of secondary vertices.

Ф

nische Hochschule Zürich