Monolithic Pixel Sensors for the ILC

Vertex 2007, International Workshop on Vertex Detectors

Lake Placid, NY (USA), September 23-28, 2007

Devis Contarato, Marco Battaglia

Lawrence Berkeley National Laboratory

Outline

- Introduction: ILC Vertex Tracker requirements
- Monolithic Active Pixel Sensors for the ILC VXD
- Current R&D trends
- VTX design and integration
- Conclusions

The ILC Vertex Detector

Precision measurements at the ILC will need a vertex detector of unprecedented

performance:

- High impact parameter resolution
 - > High granularity: $\sigma_{_{SD}}$ <5 µm \rightarrow 20 µm pitch pixels with analog readout, 10-15 µm pitch with binary readout
 - Low multiple scattering: ~0.1% X₀/layer→ 25-50 μm thin sensor layers, low power dissipation
- High occupancy, mainly from e⁺e⁻ pairs background
 - 1) Fast readout of full detector multiple times during bunch train
 - 2) Local storage of signals during bunch train, read out during beam-off period (ILC duty cycle 0.5%)

Monolithic Pixels Sensors for the ILC

- Radiation hardness:
 - lonizing dose: 50 krad/yr
 - Neutrons: 10¹⁰ n_(1 MeV)/cm²yr

Devis Contarato

- > ~10 MeV electrons: 6×10¹¹ e/cm²yr
- Possible EMI sensitivity

Constraints from background in the VXD

- Background mainly due to low momentum e⁺/e⁻ from beamstrahlung photons (due to strong focus of the beam) plus back-scattered photons, neutrons and charged particles
- High occupancy in the vertex layers → constraints on readout speed and data volume
- Necessity for radiation hardness assurance against low momentum (~10 MeV) electrons

Candidate sensor technologies (simplified)

CCDs

[see talk K. Stefanov]

DEPFET

[see talk H.-G. Moser]

[see also talks P. Lutz, G. Traversi]

MAPS: from imaging to particle tracking

- Early '90s: CMOS Monolithic Active Pixel Sensors introduced as an alternative to CCDs in visible light imaging
- Use of standard CMOS technology
- Monolithic: sensor and readout electronics on the same substrate
- Active pixel: an amplifier integrated in each pixel directly buffers the charge signal
- Advantages:
 - Low cost
 - Low power dissipation
 - Pandom access
 - Increased functionalities...

... but poor fill factor, i.e. fraction of pixel area which is sensitive to radiation → not applicable in charged particle tracking

MAPS for charged particle tracking

- 2001: proposal of new structure adapted for particle tracking (Turchetta et al., NIM A 458 (2001) 677)
- Double-well CMOS process with epitaxial layer; the generated charge is reflected by the potential barriers due to doping differences and collected by thermal diffusion by the n-well/p-epi diode; collection times ~100 nsec
- Use of CMOS technology: large scale availability at low cost, high granularity, improved readout speed and radiation hardness; the operational voltage is set by the CMOS process → no HV
- Possibility of thinning down the substrate: low material budget

Devis Contarato

MAPS detection performances

- MIMOSA series from IPHC Strasbourg: several fabrication processes and architectures explored, best performances on AMS 0.35 μm OPTO, 14 μm epilayer
- Tracking performances (100 GeV/c π @ CERN and 6 GeV e⁻ @ DESY):
 - S/N~20-30
 - noise~10-20 e⁻
 - detection efficiency>99%
 - single point resolution: 1.5-2.5 μm
- Performances reproduced with large size prototype

 $(\sim 2 \times 2 \text{ cm}^2)$

[IPHC, Strasbourg]

VERTEX 2007

Radiation hardness

- Neutron irradiation: charge losses and decrease of efficiency observed after $\sim 10^{12} \ n_{ea}/cm^2$
- Electron irradiation: performance of irradiated prototype recovered with cooling to T<-10°C
- Improved tolerance to ionizing radiation up to 1 Mrad thanks to improved pixel layout (thin oxide, guard-ring)
- ILC requirements for radiation hardness are met

Integrated functionalities: in-pixel CDS

- LDRD-2 @ LBNL: AMS 0.35 μm process, 20×20 μm² pitch with in-pixel CDS: signal and pedestal level stored on pixel capacitors, successfully tested up to 25MHz
- Several MIMOSA prototypes: in-pixel double sampling circuitry; reset and signal levels stored in capacitors at the end of the column (see talk P. Lutz for details)

Integrated functionalities: digitization

- LDRD-3 @ LBNL: AMS 0.35 μm OPTO process, 96×96 pixels, 20 μm pitch. Available October 2007.
- In-pixel CDS from LDRD-2, readout at 50 MHz
- At the end of each column:
 - 5-bit successive approximation, fully-differential ADCs @ 300 MHz
 - SRAM memory cell
- Several ADC architectures being explored by IN2P3-DAPNIA collaboration: flash, SAR, Wilkinson. Test of test structures under way, fabrication of sensor prototypes foreseen in 2008

Readout architecture: fast CP readout

- Fast column-parallel readout needed in order to read the sensor multiple times during the 1 ms bunch train; actual readout frequency depends on length of columns, i.e. integration time
- Analog readout or binary readout?
 - Analog option requires integrated ADCs: increase dead area at the edge of the ladder and power dissipation, but good position resolution can be obtained with ~20 μm pixel
 - Binary readout needs higher granularity to preserve position resolution (thus increasing number of pixels and data volume), but simplifies data processing and sparsification
 - MIMOSA-8 prototype: TSMC 0.25 μ m, 8 μ m epilayer, 25 μ m pitch, int. time<50 μ s, analog & digital output with discriminator at the end of column

- Good noise performance (ENC~15 e⁻), low pixel-to-pixel dispersion
- Test-beam(digital part): efficiency~99%, fake hit rate<10⁻³/pixel/event for low discriminator S/N cut
- ullet Architecture recently replicated in AMS 0.35 μm OPTO process (MIMOSA-16)

Readout architecture: local storage of signals

[RAL/Liverpool, UK]

- Multi-memory pixel architecture with delayed read-out (FAPS)
 first introduced by UK groups (RAL/Liverpool)
- MIMOSA-12 prototype in AMS 0.35 μm, 35 μm pitch: implements 4 capacitors/pixel (50, 100, 200 fF), various types (MOS caps are smaller but less precise, poly are more precise but larger)
- Aim for minimal size capacitors providing statisfactory precision
- Look for trade-off between pixel pitch and number of capacitors

MAPS in triple well technology

- Triple-well process: deep n-well used to shield the standard p-well; p-well hosts nMOS transistors as in standard MAPS, standard n-well may host pMOS transistors
- Deep n-well can be used to collect the charge generated in the epitaxial layer; possible inefficiency due to presence of standard n-well
- Possibility for increased complexity of the in-pixel circuitry: sparsification, time stamping

- Series of APSEL chips fabricated by INFN SLIM collaboration, proof of principle.
- New prototype in STM 0.13 μm triple well CMOS tech. with inpixel discriminator and digital section with 5-bit time stamp and data sparsification logic, 164 transistors in 25x25 μm^2 pixel
- Technology might allow time stamping during bunch train and inter-bunch readout, tailored to structure of ILC beam, EMI insensitive

[see G. Traversi's talk]

MAPS with time stamping

- Single bunch crossing tagging: bunch-by-bunch time tag for each pixel to keep low occupancy
- Readout strategy as envisioned in triple well: buffer data during the 3000 bunches in a train and readout data during the bunch trains
- In-pixel comparator + deep memory with bunch clock bus

[J. Brau, Oregon]

563
Transistors
(2 buffers
+calibration)

50 μm x 50 μm

Technology Roadmap: Macropixel size estimation vs. Mixed-signal Process Technologies

- Chronopixel: completed design of first prototype, to be fabricated in 0.18 μm TSMC technology.
- 50x50 μm pixel to house >500 transistors; need to scale down (45 nm) to fit in 20 μm pixel
- Need triple well tech. in ultimate design to increase pixel sensitive area

SOI monolithic pixels

- Silicon-On-Insulator technology
- Electronics layer isolated from high-resistivity substrate by buried oxide; depletion of substrate and readout integrated on sensor top
- Proof of principle from SUCIMA collaboration, prototype in 3 μ m process (IET, Poland), though not compatible with standard CMOS

- Novel 0.15 μm fully-depleted SOI process from OKI; combines high-res substrate with full CMOS circuitry on top layer; high-speed, low power dissipation digital design possible, latch-up immunity
- 350 μm substrate, 200 nm buried oxide, 40 nm CMOS layer, fully depleted at operational voltages
- Functionality demonstrated by KEK chip in '06

First beam on FD-SOI pixel prototype

- LDRD-SOI chip @ LBNL: 160x150 pixels, 10x10 μm² pixels
- 2 analog parts (1.0V and 1.8V) with simple 3T architecture, 1 digital part; 1x1 μm² and 5x5 μm² diodes
- Part of Dec. '06 pilot run through KEK, including chip submissions from KEK, LBNL, FNAL, Uni. Hawaii

- Digital pixels
- Beam-test with 1.35 GeV e⁻@ LBNL ALS
- Significant back-gating effect, but chip can be depleted @ 10-15V with good particle detection performances
- Laser studies under way to calibrate signal vs. depletion voltage
- Estimation of radiation hardness under way

Back-thinning

- Back-thinning of diced chips using grinding process by Aptek Industries (San Jose, CA)
- LBNL: thinned over 15 MIMOSA-5 chips: 1 M pixels, 17 μ m pitch, 17x19 mm² surface, AMS 0.6 μ m process
- Achieved 40 μm thickness, yield of functional chips~90%
- Extensive characterization pre- and post-back-thinning to study possible effects on detection performance
- → feasibility of back-thinning CMOS sensors demonstrated

Measured surface map of 50 µm thin chip

Measured average sensor thickness

Before	(550±0.5) μm
"50 μm"	(50±7) μm
"40 μm"	(41±6) μm

CMOS pixel telescopes as a tracker test-bench

- LBNL: 4 layers of 50 μm thin MIMOSA-5 chips, precisely spaced by 1.5 cm (ILC VTX like geom.); 512x512 pixels (17 μm) on each plane, parallel readout with on-line sparsification by DAS
- Good extrapolation resolution in low momentum environment thanks to low material budget
- Telescope extensively tested at LBNL-ALS with 1.5 GeV e⁻ and deployed in tracking tests with 120 GeV p at FNAL MTBF

- EUDET JRA-1 effort on 6 plane CMOS telescope
- First demonstrator built based on MIMOSA chips
- Final telescope with reticle-size chip, binary pixels
- Plan to reach ~1 μm resolution with DESY 1-6 GeV e beam with aid of high-resolution plane close to DUT
- Equip DESY/CERN testbeam facilities, available to the community

Vertex design and integration

- Proposed VXD concept based on CMOS monolithic pixels
- 5 cylindrical layers, R=15-60 mm, different pitch/layer, ~300 million pixels
- Design implemented in LDC concept simulation framework
- Inner VXD layers: need for fast CP readout and integrated signal processing (CDS, ADC, sparsification)
- Outer VXD layers: lower rate but larger data flux, implement larger pixels with local storage of charge signals, readout during beam-off periods
- Different detector concepts studying various options for VXD geometry, barrel only vs barrel plus forward disks
- On-going work on simulation of ladder geometry and mechanical support

Learning from the STAR experience

- New high-resolution vertex detector inside existing one
- 2 layers at 1.5 cm and 4.5 cm radii, equipped with CMOS pixels

STAR Heavy Flavor Tracker

	STAR	ILC
Performance drivers	Low p _T D	b/c/τ tagging
Position resolution	~10 µm	2-4 μm
Radiation length	0.3% X _o /layer	0.1% X ₀ /layer
Number of layers	2	5-6
Ladders/layer	6+18	?
Operational T	40ºC	-10ºC 20ºC
Cooling	Air flow	?
VTX mount	Side mount	Two sides

- 24 ladders, ~100 Mpixels, $30\times30~\mu m^2$, ~0.3% X_0 /layer, operation at 40°C, air cooling
- Developed lowmass ladder prototype with thin CMOS sensors achieving<0.3% X₀/layer

[see L. Greiner's talk]

Ladder prototype material budget

	<u>Component</u>	% radiation length
	MIMOSA detector	0.0534
	Adhesive	0.0143
	Cable assembly	0.090
	Adhesive	0.0143
î	CF / RVC carrier	0.11
10	<u>Total</u>	<u>0.282</u>

Conclusions

- Monolithic Active Pixel Sensors as a candidate technology for the ILC Vertex Tracker have shown excellent detection performances through several prototypes exploring different technologies and architectures:
 - Fast readout achievable with CP architecture/on-chip data reduction
 - Radiation hardness satisfactory
 - Thinning to 50 μm established
 - Implementation of integrated ADC's and data sparsification under way in forthcoming prototypes
- Bulk CMOS process optimized for imaging architecture is adequate for analog architectures with integrated functionalities (e.g. in-pixel CDS and on-chip digitization)
- Emerging technologies such as triple-well CMOS and SOI might be the optimum choice for digital architectures with in-pixel time stamping
- Application in various pixel telescopes and STAR VXD upgrade as test benches in real applications
- Integration issues to be kept in mind in parallel with sensor development (see R. Yarema's talk for 3D sensor integration and Ron Lipton's talk for ILC vertex system integration issues)

