

# Track and Vertex Reconstruction in ATLAS

Wolfgang Liebig (NIKHEF) on behalf of the ATLAS Collaboration



### The ATLAS Experiment







### **ATLAS Inner Detector**





#### **Pixel Detector**

- 50 x 400 µm pixels
- time-over-threshold signal
- 80M channels

#### **Semi-Conductor Tracker** (SCT)

- 80µm pitched strips
- digital signal
- 6.2M channels

#### **Transition Radiation Tracker** (TRT)

- 4mm Ø straws, up to 1.5m long
- drift time and high-threshold signals
- 298K channels

See talk by D. Robinson



## ATLAS Muon Spectrometer



tracking info is also provided by the Muon Spectrometer:



#### **Monitored Drift Tubes** (MDT)

- 30mm Ø tubes
- time-over-threshold signal
- 370k channels (barrel+endcaps)

#### **Thin-Gap Chambers** (TGC)

- ~30mm pitched strips
- trigger signal, endcaps

#### **Resistive Plate Chambers (RPC)**

- ~30mm pitched strips
- trigger signal, barrel

#### **Cathode Strip Chambers** (CSC)

- 5mm cathode pitch
- far-forward endcaps only

Inner Detector tracking software has been developed together with Muon Spectrometer (where relevant)



## Track and Vertex Reconstruction at LHC



- Detectors for LHC are a challenge
- Good event reconstruction is part of a functioning detector!
- Needs to cope with (for example)
  - large detectors but high resolution
    - sensitive to deformations
  - $\sim$ 24 simultaneous p-p collisions at  $10^{34}$ cm<sup>-2</sup>s design luminosity
    - complicated event topology
  - huge amount of data, triggering
    - very fast and stable algorithms
  - delicate physics questions
    - avoid systematic errors
- ATLAS meets challenge with careful software preparation and intensive commissioning programme

#### ATLAS Barrel Inner Detector

 $H \rightarrow ZZ^{\dagger} \rightarrow e^{\dagger}e^{\dagger}e^{\dagger}e^{\dagger}$  (  $m_H = 130 \text{ GeV}$  )





### Track/Vertex Reconstruction Software



- ATLAS before 2004: competing monolithic packages
  - good (complementary) performance
  - closed algorithms with incompatible data models
  - similar situation in Inner Det., Muon Spec. and Vertexing
- 2003: strong recommendation by internal software review
  - common data objects
  - modularised logical structure: algorithms using common services and common tools
  - exploit synergies between Inner and Muon trackers, basis for combined reconstruction, calibration, alignment
- Today's ATLAS Software (eg. Inner Detector)
  - migration of old algorithms, add new tracking techniques
  - ⇒ collaboration within tracking/vertexing and across projects
  - ⇒ thorough preparation for effects expected with real data

Main motivation and challenge: if realistic effects are not properly corrected, advanced detector capabilities may easily be lost



### Tracking Event Data Model







### **Common Services**



**GeoModel:** detector description

- common for simulation and reconstruction
- aligned geometry & material constants

#### **Tracking Geometry:**

fast geometry & material densities <sup>14</sup>

#### **Detector Calibration**

- dead and noisy channels
- drift time

#### Magnetic field

#### **Beam spot**



Database organised by run intervals







### **Detector Description**



- ongoing effort towards correct and detailed as-built geometry
- items are measured and weighed as they are installed



 Calibration Data-Challenge: test reconstruction+performance using distorted simulation

#### **Tracking Geometry:**

- fast and simplified detector descr.
- navigation and material effects
- Inner Detector: 125 layers/volumes (full detector descr. ~1M objects)



reproducesGeant4material





### Inner Detector: New Modular Tracking

p. 9

- Tracks from interaction region: Si-seeded track search
  - track candidate finding from Pixel+SCT
  - ambiguity solving including track fit
  - Extension to TRT and full re-fit
- Complementary strategies: under development
  - TRT-seeded search for recovering secondary tracks
  - V0s, conversions
- High-Level trigger tracking ("Event Filter")
  - apply same code to region of interest
- Cosmics+TestBeam Tracking: Two Strategies
  - additional small package for low track multiplicities





- each task/operation defined by abstract interface
- implemented by one or several (specialised) tools
- configurable at run time
- common tracking tools: designed for tasks in Inner Detector, Muon Spec. and combined (e.g. track fit)





### Track Finding in the Si Detectors



- Provide 3D space-points: 2D hit (pixel or stereo strips) on surface
- Find track seeds with at least 3 space points (curvature)



- extend to full ATLAS Pixel + SCT track candidate
- score candidates according to hits, holes, χ2 scattering...
- detect shared hits and resolve ambiguities by doing full track fit
- fitted parameters seed local pattern recognition in TRT



**ATLAS Track Fit Algorithms** 



- Legacy code and new tool
- Chi2 extended for multiple scattering and energy loss
- in use in MuonSpectrometer and muon combined track fit
- same material constants as Kalman fit

G.Lutz, NIM A 273 (1988) 349 T.Cornelissen et al, Proc of CHEP2007 #144



- flexible MS/Eloss model
- Default in Inner Detector
- Several powerful extensions
  - Dynamic Noise Adjustment,
     Gaussian Sum Filter
     (electron bremsstrahlung)
  - Deterministic Annealing Filter (high occupancy tracking)

R.Frühwirth et al, NIM A 262 (1987) 444 V.Kartvelishvili, IPRD06, Nucl.Phys B (proc) R.Fühwirth, Comp.Phys.Comm 154 (2003) 131. A. Strandlie et al, Comp.Phys.Comm 133 (2000) 34



### Inner Detector Tracking Performance

- validate good performance as part of reconstruction
- efficiencies and resolutions

| efficiency/fake [%] | Z->µµ  | ttbar   |
|---------------------|--------|---------|
| barrel              | 99/0.4 | 98/     |
| transition          | 99/0.6 | 97/0.14 |
| end-cap             | 96/1.2 | 96/0.34 |

- pull quantities to test calibration and material effects
- code & performance monitored by daily automatic framework





### **Electron Tracking in Si Detectors**



- described by Gaussian process noise electron bremsstrahlung can not be
- standard track fit biased
- several electron-specific track fits
- novel approach in ATLAS: Dynamic Noise Adjustment extension of standard Kalman filter
  - detect if position of next hit indicates (strong) brem'
  - if not continue KF. If yes, estimate z (energy fraction retained by electron)
  - calculate probability of z using material
  - calculate extra noise for covariance term s(q/p) and continue KF
- barrel layers: 2-6% radiation length probability for significant brem
- effects of brem much higher in end-cap (dead material)







## Commissioning with Cosmic Rays





Combined reconstruction of a cosmic  $\mu$  in ATLAS

See also talks by D. Dobos, T. Golling



### **Vertex Reconstruction**



#### **Primary Vertex**

- LHC beam spot  $\sigma_x = \sigma_v = 15 \mu \text{m}$ ,  $\sigma_z = 5.6 \text{cm}$
- however, better knowledge required for combined reconstruction (b- and tau tagging) and physics analyses (Higgs search, B-physics)
- separate signal from pile-up vertices
- different finding and fitting techniques available

#### **Secondary Vertex**

- identify decay vertex of B, D hadrons
- essential for inclusive b-tagging
- same fitting techniques as for primary vertex (secondary vertex finding is specific to the task)

#### Vertices of exclusive decays or photon conversions

- reconstruct specific topology, e.g.  $J/\psi -> \mu\mu$ ,  $V_0$  decay,  $\gamma -> e^+e^-$
- kinematic fitting: mass constraint, pointing to primary vertex etc.





### **Vertex Reconstruction Software**



#### **Developed in parallel to Tracking Software:**

- data structures are part of ATLAS event data model
- modularity and interfaces for tasks/operations
- migration of old code

# m\_recVertex : Trk::RecVertex # m\_vxTrackAtVertex : std::vector< Trk :: VxTrackAtVertex \* >

#### **Adaptive Multi-Vertex Fitter**



 an iterative annealing procedure is used to approach a hard assignment



### **Vertex Fitters**



#### Billoir tools package (P.Billoir, S.Qian Nucl. Ins. and Meth. in Phys. Res. A311(1992) 139-150)

- The equations of motion of a charged particle in the magnetic field are approximated with their Taylor expansion in the vicinity of the vertex.
- FastVertexFitter: the momentum vector is considered constant in the vicinity of the vertex. No refit of the incident tracks is performed.
- FullVertexFitter: The full parametrization of tracks is used, the refit of incident tracks is performed.

#### Sequential vertex fitter (R.Frühwirth Nucl. Ins. and Meth. 225(1984) 352)

- Implements a conventional Kalman filter for the vertex fitting.
- A full analytical derivation of equation of motion is used.

#### Adaptive vertex fitter (R.Frühwirth et al. Nucl. Ins. and Meth. in Phys Res A 502 (2003) 699)

- An iterative re-weighted least square algorithm.
- Down-weights tracks according to their compatibility to the vertex candidate.
- The outliers are thus efficiently discarded.



## Primary Vertex Rec. Performance



ATHENA rel. 12.0.6 Adaptive Multi Vertex Finder





ttbar
Finding efficiency
(100 μm criterion)
ε= 96.9 ± 1.8 %





H(130) $\rightarrow$ 4l Finding efficiency (100 µm criterion)  $\epsilon$ =94.1 ± 1.6 %

Realistic conditions: misaligned geometry with material distortion



## Secondary vertex in flavour tagging

#### Improve tagging by adding information from B-decay vertex

- form inclusive vertex of b-hadron decay products
- purify seeds by kinematic cuts
- calculate discriminators, e.g.



- sec. vertex efficiency ~60%
- increases light-quark rejection compared to impact-par. tag

#### **New JetFitter:**

common geometr. vertex is not correct hypothesis

fit B/D decay as separate vertices

fit B/D decay as separate vertices by clustering

# them along b-hadron flight axis

jet axis

b-hadron

flight axis



significantly better performance



### **Summary and Outlook**



- ATLAS has redesigned its track & vertex reconstruction:
  - modularity, common interfaces and data model
  - new code performs well (level of physics TDR or better)
  - several new developments integrated in new software
  - success with real data: combined test beam, cosmic μ
- Software still being optimised and extended
  - reconstruction of physics objects: e<sup>±</sup>, μ<sup>±</sup>, tracks in jets...
  - vertex reconstruction in jets or with kinematic constraints
- Thorough preparation for a realistic detector
  - integrate alignment and calibration in reco framework
  - conditions support to cope with real detector
  - precise description of detector material
  - simulate realistic field, material and geometry
  - preparing for cosmic ray data with installed Si detectors
- ATLAS Inner Detector tracking software will be well prepared for LHC turn-on





### Some BACKUP slides



### Framework for Reconstruction Design





for offline and event filter (3rd level trigger)

data objects separated from algorithms



## Tracking Tools: Parameter Extrapolation

- available to entire ATLAS thanks to
  - det-independent tracking EDM
- modular due to
  - abstract interfaces
- uses TrackingGeo.
   to provide material
   effects to track fit







### Inner Detector Tracking Performance



- old algorithms still available as reference
- code development monitored by daily automatic framework
- good efficiencies and resolution achieved









## **Expected Material Effects in Silicon**





### Combined Test Beam 2004



#### **Combined test-beam 2004**

beams through slice of ATLAS



- Exercise tracking on real data
  - detector imperfections
  - data decoding
  - use conditions database
  - monitoring
- study performance and improve simulation for ATLAS



### Commissioning with Cosmic Rays







Cosmic µ in SCT endcap before installation

See also talks by D.Dobos, D.Robinson

