

The PAMELA experiment

MAIN TOPICS:

- CR antiproton and positron spectra:

 ~10⁴ antiprotons → 80 MeV/c 190 GeV/c

 ~10⁵ positrons → 50 MeV/c 270 GeV/c
- search for light antinuclei

SECONDARY TOPICS:

- Modulation of GCRs in the Heliosphere
- Solar Energetic Particles (SEP)
- Earth Magnetosphere

- Orbital parameters:
 - inclination $\sim 70^{\circ}$ (\Rightarrow low energy)
 - altitude ~ 360-600 km (elliptical)
 - active life >3 years (⇒ high statistics)
- Launched on 15th June 2006

→ First switch-on on 21st June 2006

- Detectors in nominal conditions (no problems due to the launch)
- Tested different trigger and hardware configurations
- Commissioning phase successfully ended on September 15th 2006
- → PAMELA in continuous data-taking mode since then!

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

Size: 130x70x70 cm³ **Power Budget: 360W**

GF: 21.5 cm² sr **Mass: 470 kg**

Time-Of-Flight plastic scintillators + PMT:

- Trigger
- Albedo rejection;
- Mass identification up to 1 GeV;
- Charge identification from dE/dX

W/Si sampling (16.3 X0, 0.6 λl)

- Discrimination e+ / p, anti-p / e-(shower topology)
- Direct E measurement for e

Spectrometer

microstrip silicon tracking system + permanent magnet It provides:

- **Magnetic rigidity** → R = pc/Ze
- Charge sign
 - Charge value from dE/dx

Antiprotons

Spectrometer required performances:

4 μ m resolution on the bending view (x) \rightarrow MDR = 740 GV \rightarrow spillover limit 190 GeV

(MDR = Maximum Detectable Rigidity $\rightarrow \Delta R/R=1$ @ R=MDR)

Outline

- Summary of spectrometer design
- In-flight performances (main focus on relativistic protons):
 - Basic performances
 - Position reconstruction
 - Momentum measurement
 - Preliminary results
- Conclusions

Spectrometer design

PAMELA scientific objectives require extremely good momentum resolution:

- silicon detectors \rightarrow low noise electronics \rightarrow spatial resolution $\sim \mu m$
- reduced amount of traversed material → minimize multiple scattering effect

Satellite constraints:

- mechanical stresses during launch phase (7.4 g rms, 50 g shocks)
- thermal variations (5-35 °C)
- small power consumption
- redundancy and safety
- protection against highly ionizing cosmic rays
- limited telemetry

The magnet

- 5 magnetic modules
- Permanent magnet (Nd-Fe-B alloy) assembled in an aluminum mechanics
- Magnetic cavity sizes (132 x 162) mm² x 445 mm
- Geometric Factor. 20.5 cm²sr
- Black IR absorbing painting
- Magnetic shields

Magnet elements

Aluminum frame

Magnetic module

The magnetic field

MAGNETIC FIELD MEASUREMENTS

- Gaussmeter (F.W. Bell) equipped with 3-axis probe mounted on a motorized positioning device (0.1mm precision)
- Measurement of the three components in 67367 points 5mm apart from each other
- Field inside the cavity:
 - 0.48 T @ center
 - Average field along the axis: 0.43 T
- Good uniformity
- External magnetic field: magnetic momentum < 90 Am²

The tracking system

6 detector planes, each composed by 3 ladders Mechanical assembly

- aluminum frames
- carbon fibers stiffeners glued laterally to the ladders
- no material above/below the plane
 1 plane = 0.3% X₀ → reduced multiple scattering
- elastic + rigid gluing

Test of plane lodging inside the magnet

The flight model

Silicon detector ladders

Insulating layer
 Second metal layer

ohmic side

67um

- 2 microstrip silicon sensors
- 1 "hybrid" with front-end electronics

Silicon sensors (Hamamatsu):

- 300 μm, double sided x & y view
- AC coupled (no external chips)
- double metal (no kapton fanout)
- 1024 read-out channels per view
 - strip/electrode coupling ~ 20 pF/cm;
 - channel capacitance to ground:
 - junction: < 10 pF
 - ohmic: < 20 pF

Bias:

- VY -VX = + 80 V fed through guard ring surrounding the strips
- · Bias resistor:
 - junction: punch-through, > 50 M Ω ;
 - ohmic: polysilicon, $> 10 \text{ M}\Omega$.
- Leakage current < 1 μA/sensor.

S=ADC-PED-CN 1 MIP~150 ADC counts (@peak) Ohmic side (y) 2000 1000 1000 1000 S 1000 S 1000 1000 1000 S

Elena Vannuccini

Readout electronics

<u>Front-end</u> → VA1 chips:

- 16 chip/ladder → 288 chips
- 1.2 μm CMOS ASIC (CERN Ideas, Norway);
- 6.2 mm · 4.5 mm chip area; 47 µm input pad pitch
- 128 low-noise charge preamplifiers
- shaping time 1 μs
- operating point set for optimal compromise:
 - -Po wer consumption 1.0 mW/channel → total dissipation 37 W for 36864 channels;
 - voltage gain 7.0 mV/Fc → dynamic range up to 10 MIP

ADC:

- 1 ADC/ladder → 36 ADCs
- event acquisition time 2.1 ms.

DSP:

- 1 DSP/view (ADSP2187L) → 12 DSPs
- control logics on FPGA chips (A54SX)
- on-line calibration (PED,SIG,BAD)
- data compression:
 - compression factor > 95%
 - compression time ~1.1 ms

Orbital environment and in-flight operation

- Particle rate:
 - -maximum at the poles (cutoff <100 MV)
 - -minimum at the equator (cutoff ~15 GV)
- Instrument operates also inside radiation belts

Tracker operations:

- <u>Calibration</u> performed every 95 min, soon after ascending node
- Data acquisition
 Special run after calibration → full mode
 Physics run → compressed mode (~5%)
 12 x 250 B ~ 3 kB/ev → 5 kB/ev (all detectors)
- Slow controls , eg temperature sensors:
 - →~21° @ power up, **~28°** @ regime
 - → < 1° C variations along orbit
- Remote controls:
 - → DSP configuration

Calibration

Pedestal

Noise

→ Noise performance is nominal

Cluster signal

→ Cluster characteristics are nominal

Charge identification capabilities

- Good charge discrimination of H and He
- Single-channel saturation at ~10MIP affects B/C discrimination

Charge collection

• Non-linear charge collection \rightarrow best estimate of impact coordinate given by η -algorithm:

$$x(\eta) = x(\eta_0) + \int_{\eta_0}^{\eta} H(y) dy \xrightarrow{x(\pm 0.5) = \pm 0.5} x_s(\eta) = -0.5 + \int_{-0.5}^{\eta} H(y) dy$$
(standard implementation)

Experimental η-distribution

• for small angles (<10°) 2-strip algorithm gives best resolution \rightarrow $x_s(\eta_2)$

Angular systematic

Standard implementation of the η -algorithm relies on the assumption of symmetric signal distribution \rightarrow condition not satisfied in case of inclined tracks

$$x(\eta) = x(-0.5) + \int_{-0.5}^{\eta} H(y)dy = x_s(\eta) + \underbrace{x(-0.5) + 0.5}_{\Delta}$$

Asymmetry of the signal distribution introduces a systematic error in the standard application of the half algorithm

Angular correction

Angular effect studied in ref. Landi G., NIMA, 554 (2005) 226:

- study of discretization effects on position reconstruction with silicon microstrip detectors, by means of analytical model (signal theory) and Monte Carlo simulation (both tuned on PAMELA tracker sensors)

Results:

- Standard η -algorithm has a systematic error up to $\sim 2\mu m \rightarrow significant$ on the x view!
- Correction can be derived from data itself
- (Center of gravity with 4 strips (or more) has no systematic (but worse resolution))

Angular systematic (beam test)

On 2006 test of detector prototypes @SPS (protons 50-100-150 GV/c)

- Theoretical results confirmed
- Correction account also for intrinsic asymmetries

Angular systematic (flight data)

 $\theta_{\rm eff}$ (deg)

x_{fit}-x_{meas} (cm)

Spatial resolution

Sensor instrinsic resolution

Spatial resolution studied by means of beam-test of silicon detectors and simulation

- junction side (X): $3 \mu m @0^{\circ}$, < 4 μm up to 10° (\rightarrow determines momentum resolution)
- ohmic side (Y): $8 \div 13 \mu m$

Sensor alignment

Track-based alignment: minimization of spatial residuals as a function of the roto-traslational parameters of each sensor

- Proton beam (@CERN-SPS 2003) and atmospheric muons (cross-check)
 ~ ~100±1 μm
- In-flight corrections with protons \rightarrow ~10 μm

Spatial residual (x side)

Flight data - protons 7-100 GV (6x6y, all plane included in the fit)

→ Spatial resolution is nominal

Spatial residual (y side)

Flight data - protons 7-100 GV (6x6y, all plane included in the fit)

→ Spatial resolution is nominal

Track recognition

- Hough transform: circle sector (X) + straight line (Y)
 - → Track recognition efficiency close to nominal value (sensor geometry)
- Ambiguity on Y view solved with help from ToF and calorimeter information

Track fitting

- Stepwise integration of motion equations by means of Runge-Kutta method (not-homogeneous B field)
- Iterative χ^2 minimization as a function of track state-vector components $\alpha = (x0, y0, \sin\theta, \phi, \eta)$ $\eta = 1/R = \text{magnetic deflection}$

Energy dependence due to multiple scattering effects

Momentum resolution

- → Measured at beam test with protons of known momentum (CERN SPS, 2003)
- \rightarrow In-flight cross-check with e⁻/e⁺ (energy measured by the calorimeter), to account for residual distortions after alignment procedure \rightarrow (in progress)

Hydrogen and Helium spectra

→ Good energy reconstruction over a wide energy range

Antiprotons

→ Spillover background under control

Conclusions

PAMELA is in space, continuously taking data since July 2006

Study of detector performances in flight is now in progress

Magnetic spectrometer:

- basic performances (noise, cluster signal...) are nominal
- position reconstruction algorithm extensively studied and applied to flight data
- spatial resolution in flight consistent with expectations
- → Spectrometer performances fulfill the requirements of the experiment!

Spares

PAMELA detectors

TRD

- Threshold device. Signal from e^{\pm} , no signal from p, p
- 9 planes of Xe/Co₂ filled straws (4mm diameter). Interspersed with carbon fibre radiators ⇒ crude tracking.
- Aim: factor 20 rejection e/p (above 1GeV/c) (2. 10⁵ with calorimeter)

Si Tracker + magnet

- Measures rigidity
- 5 Nd-B-Fe magnet segments (0.4T)
- 6 planes of 300mm thick Si detectors
- ~3mm resolution in bending view demonstrated, ie: MDR = 740GV/c
- •+/-10 MIP dynamic range

Anticoincidence system

- Defines acceptance for tracker
- Plastic scintillator + PMT

Time-of-flight

- Trigger / detects albedos / particle identification (up to 1 GeV/c) / dE/dx
- Plastic scintillator + PMT
- Timing resolution = 120ps

Si-W Calorimeter

Measures energies of e[±].

 $DE/E = 15\% / E^{1/2} + 5\%$

- Si-X / W / Si-Y structure.
- 22 Si / 21 W \Rightarrow 16X₀ / 0.9I₀
- Imaging: EM vs- hadronic discrimination,longitudinal and transverse shower profile

PAMELA nominal capabilities

	energy range particles in	3 years
 Antiproton flux 	80 MeV - 190 GeV	~ 104
 Positron flux 	50 MeV – 270 GeV	~ 10 ⁵
 Electron flux 	up to 400 GeV	~ 10 ⁶
 Proton flux 	up to 700 GeV	~ 10 ⁸
 Electron/positron flux 	up to 2 TeV (from calorimeter)	
 Light Nuclei 	up to 200 GeV/n He/Be/C:	~10 ^{7/4/5}
 AntiNuclei search 	sensitivity of 3x10 ⁻⁸ in He/He	

- → Simultaneous measurement of many cosmic-ray species
- → New energy range
- → Unprecedented statistics

Taking into account live time and geometrical factor:

1 HEAT-PBAR flight ~ 22.4 days PAMELA data

1 CAPRICE98 flight ~ 3.9 days PAMELA data

Dead/Live time

Temperatures

- After power-up temperature remains stable:
 - < 1° C variations along orbit;
 - < 10° C difference between PAMELA off and on.
- Heat from VA1 on hybrids radiated to the magnetic tower:
 - black IR absorbing painting on the walls;
 - heat released from magnetic tower to cooling loop (liquid iso-octane).

At power-up: 21° C (5000 s ~ 0.9 orbits)

8 days after power-up: 28° C (10000 s ~ 1.8 orbits)

Angular correction in flight

Effect of the magnetic field on the reconstructed position

Charge distribution displacement

$$\Delta_H = \frac{L}{2} \mu_H B$$

$$\rightarrow \Delta_H^h \sim 1.8 \mu m$$

• Shape (almost) equivalent to that of an inclined track

$$\tan \theta_{eff} = \mu_H B$$

$$\rightarrow \theta_{eff}^h \sim 0.7^o \ (@0^o)$$

