LHCb Alignment Strategy

UNIVERSITY of GLASGOW

- 1. Introduction
- 2. The alignment challenge
- 3. Conclusions

26th September 2007

- 2. The alignment challenge
- 3. Conclusions

1

• A large b quark production in the acceptance

2 A precise vertex reconstruction (see JC Wang's presentation)

• Avery good particle ID

Over the end of the e

8 4 heavily rely on a good alignment

\Rightarrow The alignment problem:

 \rightarrow With no correction, one gets a bad quality track (or even no track at all)

 \Rightarrow How could this affect LHCb results ?

2. The alignment challenge

3. Conclusions

\Rightarrow Example 1 : proper-time estimation

$$\text{Proper-time} \Rightarrow \ \tau = \frac{d \cdot m_B}{c \cdot |p_B|}$$

1. What's the problem with alignment ?

2. The alignment challenge

3. Conclusions

\Rightarrow Example 2 : trigger efficiency

UNIVERSITY

GLASGOW

\Rightarrow Example 3 : vertex reconstruction from Nov. 2006 VELO testbeam

2. The alignment challenge

3. Conclusions

LHCb alignment strategy
The VELO example
Other sub-detectors

\Rightarrow <u>A 3 steps procedure :</u>

Alignment precision

• Complete **survey** of every sub-detector and of all the structure when installed in the pit (*work ongoing, huge amount of data collected*)

2 Hardware alignment (position monitoring):

- \rightarrow Stepping motors information during VELO boxes closing
- → **OT** larges structures positions constantly monitored (*RASNIKs system*)
- \rightarrow Laser alignment for RICH mirror positioning

3 Software alignment

LHCb alignment strategy
The VELO example
Other sub-detectors

Align all sub-detectors (VELO, IT, OT, RICHs) internally

Align the sub-detectors w.r.t. the VELO (*Global alignment*). Start with IT & OT, then TT (*not alignable internally*), RICH and finally Ecal, Hcal and Muon.

3 Use a common software infrastructure (*easier to maintain/understand*)

LHCb alignment strategy
The VELO example
Other sub-detectors

\Rightarrow **ESCHER** : the LHCb software alignment project :

LHCb alignment strateg
The VELO example
Other sub-detectors

UNIVERSITY of GLASGOW

\Rightarrow VELO alignment : how to proceed ?

1. LHCb alignment strateg 2. The VELO example 3. Other sub-detectors

LHCb alignment strateg
The VELO example
Other sub-detectors

 \rightarrow **Residuals** are function of the detector resolution, but also of the misalignments

 \rightarrow The geometry we are looking for is the one which **minimizes the tracks residuals** (*in fact there are many of them but there are ways to solve this problem*).

LHCb alignment strateg
The VELO example
Other sub-detectors

• GLOBAL FIT IDEA : Express the residuals as a linear function of the misalignments, and

fit both track and residuals in the meantime:

Taking into account the alignment constants into the fit implies a simultaneous fit of all tracks (they are now all 'correlated'):

 \Rightarrow We get the solution in **only one step**.

```
\Rightarrow The final matrix is huge (N<sub>tracks</sub>·N<sub>local</sub>+N<sub>global</sub>)
```

• But inversion by partitioning (*implemented in V.Blobel's* **MILLEPEDE** algorithm), reduces the problem to a $N_{global} \times N_{global}$ matrix inversion !!!

2. The VELO example

 \rightarrow Code working within ESCHER. MC tests made with different misaligned geometries.

 \rightarrow Resolution on alignment constants (with ~20000 tracks/box) are $1.2 \,\mu m$ $(\delta x \text{ and } \delta y) \text{ and } \mathbf{0.1} \text{ mrad} (\delta \gamma)$

 \rightarrow Algorithm is fast (few minutes on a single CPU)

 \rightarrow **STEP 2** results also within I HCb requirements (see <u>CERN-LHCb-2007-067</u>)

LHCb alignment strateg
The VELO example
Other sub-detectors

\Rightarrow VELO : testbeam results (*Nov.06*)

1. LHCb alignment strategy 2. The VELO example 3. Other sub-detectors

UNIVERSITY of GLASGOW

\Rightarrow VELO : phi sensors residuals vs. ϕ

- Just for fun, what we got first...
- After some bugs corrections we got bananas...
- And finally we aligned (more info: <u>http://ppewww.physics.gla.ac.uk/LHCb/VeIoAlign/VeIoACDC3.html</u>)

VERTEX 07

LHCb alignment strategy
The VELO example
Other sub-detectors

\Rightarrow VELO : sensor resolution

LHCb alignment strategy
The VELO example
Other sub-detectors

\Rightarrow Tracking system alignment

 \Rightarrow **IT** and **OT** are internally aligned separately, then w.r.t. each other using the overlap areas.

 \Rightarrow Use the same method as the VELO (global fit via Millepede) within the ESCHER framework.

 \Rightarrow An iterative method is also implemented for **OT**, using the LHCb tracking framework (*based on BaBar* SVT alignment algorithm)

 \Rightarrow Both methods are currently under development, first results have already been obtained (*retrieve simple misalignments,...*)

LHCb alignment strategy
The VELO example
Other sub-detectors

UNIVERSITY of GLASGOW

\Rightarrow Global alignment

 \Rightarrow Most critical step is tracking system alignment:

VELO to T-stations (IT & OT)TT to VELO/IT/OT

 \Rightarrow Strategy for step ① has been defined (*match tracks fitted independently in both tracking systems*) and successfully tested on MC. Has to be extended to step ②

 \Rightarrow The algorithm is ready for LHCb alignment challenge (*full-dress* rehearsal of the alignment project using MC misaligned samples), which is foreseen for the end of 2007

. The alignment challenge

3. Conclusions

 \Rightarrow LHCb tracking system alignment strategy has been presented (*available in* <u>CERN-LHCb-2006-035</u>).

 \Rightarrow It has to take into account LHCb unique specificities (*e.g.* moving VELO) and requirements (*online vertex trigger*)

 \Rightarrow Work is ongoing on many fronts, and some nice results have already been obtained (*VELO testbeam alignment*). A common software framework is now in place and will be tested soon (*Alignment Challenge*).

 \Rightarrow We are now waiting the first beams (as we can't play with cosmics \bigotimes)

2. The alignment challenge

3. Conclusions

3. Sub-detectors overview

\Rightarrow <u>RICH alignment : principle</u>

3. Sub-detectors overview

\Rightarrow <u>RICH alignment : results</u>

Alignment code implemented Minimization using MINUIT

