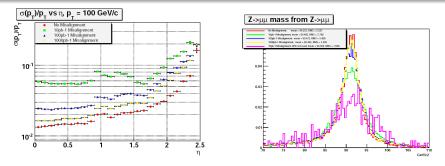
#### Tracker Alignment Strategy in CMS and Experience with Cosmic Ray Data

# Gero Flucke

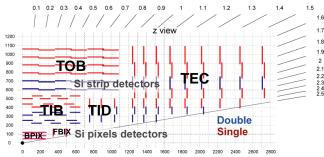
(on behalf of the CMS Collaboration)






# Vertex 2007

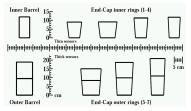
16th International Workshop on Vertex Detectors September 23-28, 2007 Lake Placid, NY, USA


# **Misalignment Effects and Outline**



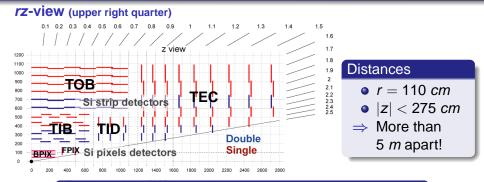
- The CMS Alignment Challenge
- The Strategy:
  - From Assembly...
  - ... via Survey and Laser System Measurements
  - ... to Track Based Alignment
  - ... and their Combination
- Monitoring
- First Experience with Cosmic Ray Data

# The CMS Tracker: All Silicon


#### **rz-view** (upper right quarter)



#### Sensor thickness


- r < 11 cm: 285/270 μm (Pixel)
- r < 55 cm: 320 μm (Strip)
- r > 55 cm:
   500 μm (Strip)

#### Many sensor shapes in Endcaps:

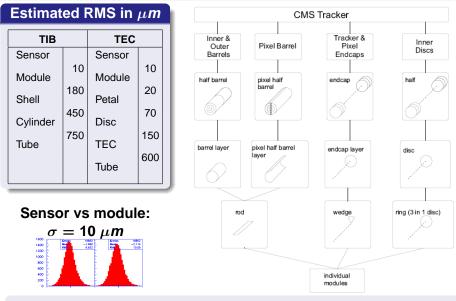


- Pixel size:  $100 \times 150 \ \mu m^2$
- Strip pitch: 80 205  $\mu m$
- Strips parallel to
  - z: rectangular sensors
  - r: wedge shaped sensors
- "2D" strip:  $\angle$ (sensors) = 100  $\mu$ rad

# CMS Tracker Alignment Challenge



#### Parameters: up to $\approx$ 100 000


- 15148 silicon strip modules:  $\sigma \approx 23 60 \ \mu m (r\phi)$
- 1440 silicon pixel modules:  $\sigma \approx 9 \times 10 35 \ \mu m (r\phi \times z)$  $\Rightarrow 16588 \times 6 = 99528$  rigid body parameters
- some insensitive, e.g. global z of "1D" barrel strips
- modules of "2D" strip layers treated as one

ъ

# Alignment Strategy in Time

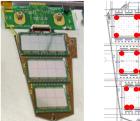
- High Mounting Precision
- Survey Measurements
- Laser Alignment System
- Track Based Alignment
- Online Monitoring

# Assembly Precision and Hierarchy



#### $\Rightarrow$ placement uncertainties increasing for larger structures

Gero Flucke (Universität Hamburg)


Tracker Alignment in CMS

# Survey Measurements

#### TIB+ layer 3: CMM

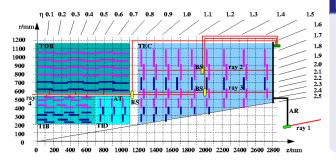


Forward Pixel Blade: Fiducial points



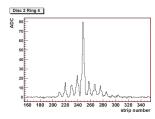
#### Photogrammetry, CMM

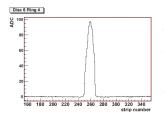
- Different subdetectors measured in different depth.
- Outer Strip (TOB and TEC):
  - large structures like Half Barrel or Endcaps measured
- Inner Strip (TIB and TID):
  - $\approx$  2000 points per layer/disc
  - down to module level
- Forward pixel:
  - Very detailed:
    - Many fiducial points per sensor


イロン イボン イヨン イヨン

- Pixel Barrel
  - Partial survey planned (e.g. 1st/3rd layer)

Gero Flucke (Universität Hamburg)


Tracker Alignment in CMS


# Laser Alignment System

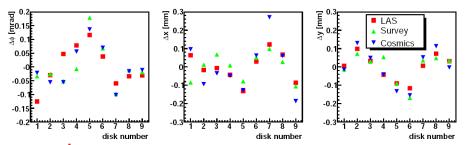


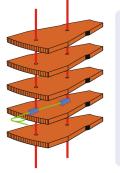
#### Infrared laser

- 2x8 beams through each TEC
- 8 beams connecting TIB, TOB, TEC
- measured with tracking sensors.






#### Beam:


- Intensity varied.
- O(100) events to increase S/N.
- Profile depends on N(sensors) crossed.

Gero Flucke (Universität Hamburg)

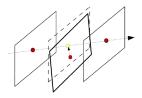
Tracker Alignment in CMS

# Laser Alignment System in TEC Integration



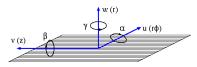


- Laser system, photogrammetry and track based alignment with cosmics.
- Global degrees of freedom fixed


(shift, rotation, torsion, shear).

- Small disc misplacement and rotations.
- ⇒ High mounting precision confirmed!

• Agreement within 60  $\mu m (x/y)$  an 80  $\mu rad (\phi)$ .


 $\Rightarrow$  Upper limit on precision of methods.

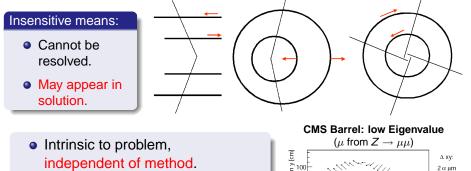
# Track Based Alignment (TBA)



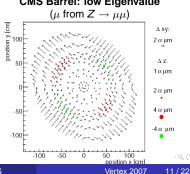
#### Common principles

- Minimisation of χ<sup>2</sup> of track hit residuals.
- ≤ 6 rigid body parameters.




#### Algorithms

- Three algorithms in CMS: HIP: module-wise ("local"), iterative Kalman: extending track fit with alignment parameters, sequential Millepede II: "global" minimisation of alignment and track, single step (besides outlier rejection) Able to deal with higher level
- objects, following mechanical structures.
  - $\Rightarrow$  adjustable to available statistics


• CPU/memory under control. ( $\Rightarrow$ )

# The Challenge: Distortions

Minimising residuals can be insensitive to certain global distortions.



- Resisting high statistics.
- Biases measurements.
- Dependent on data sets:
  - ⇒ need more than just tracks from interaction point

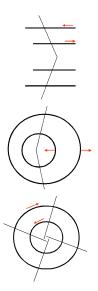


## **Useful Data**

## • $\mu$ tracks from $Z \rightarrow \mu^+ \mu^-$ and $W \rightarrow \mu \nu$

- abundant at high luminosity
- Iow multiple scattering
- cosmic ray  $\mu$ 
  - relate opposite detector parts with common curvature
  - with **B** = 0 even straight line (but moving detector?)
- beam halo  $\mu$ 
  - similar to cosmics for endcaps

## • mass constrained $Z \rightarrow \mu^+ \mu^-$ and $J/\Psi \rightarrow \mu^+ \mu^-$


- common vertex prevents  $\Delta \phi(r)$
- mass sets momentum scale (weakly...)

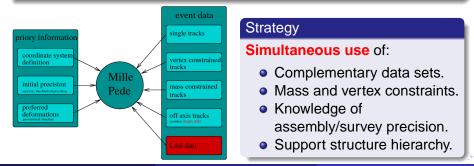
#### minimum bias tracks

- abundant in the beginning
- high sensitivity to  $r\phi$  rotation

#### minimum bias tracks with primary vertex constraint

- sensitive to shifts of opposite detector parts
- at low luminosity well defined primary vertex
- "tracks" from laser system
  - straight lines in endcaps (known momentum)




(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Tracker Alignment with Millepede II

#### Millepede II

#### (by V. Blobel)

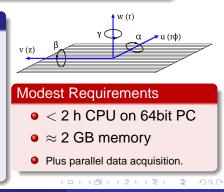
- Simultaneous fit of track and alignment parameters.
  - $\Rightarrow$  **C** · *a* = *b* with **C** *n*×*n* matrix for *n* alignment parameters
- Outlier rejection/down weighting.
- Constraints, e.g. to fix global d.o.f. (via Lagrangian multipliers).
- Fast methods for solving matrix equation (up to 100 000 parameters).
- Sparse matrix storage.
- Damping weakly of d.o.f. by  $\chi^2$ -penalties (~ regularisation in unfolding).



Gero Flucke (Universität Hamburg)

# Full Scale Tracker Alignment Study (MC)

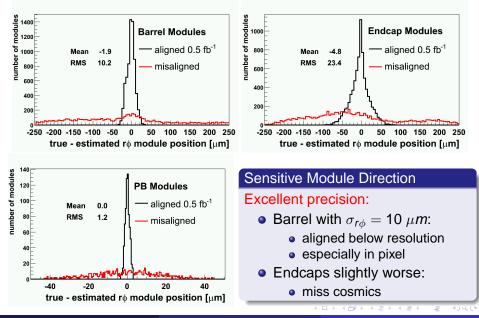
#### Millepede II: Scenario


• Start up misalignment (pixel roughly pre-aligned to 15 µm).

#### Data sets:

- single  $\mu$  tracks  $\Leftrightarrow$   $W \rightarrow \mu \nu$  of  $L = 0.5 \ fb^{-1}$
- $Z \rightarrow \mu \mu$  with mass/vertex constraint  $\Leftrightarrow L = 0.5 \ fb^{-1}$
- 25 k cosmic with  $p > 50 \text{ GeV} \Leftrightarrow \mathcal{O}(3 \text{ weeks})$ .

#### Parameters

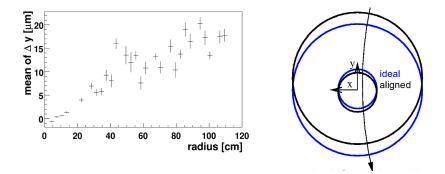

- Shifts: 3(2) for 2D(1D) modules.
- Rotation: around sensor normal.
- $\Rightarrow \approx$  45 000 degrees of freedom.
  - Coordinate system defined by Pixel barrel.
  - χ<sup>2</sup>-penalties for module movements/rotations ("prior knowledge")



Vertex 2007

14/22

# Full Scale Tracker Alignment Study




Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS

Vertex 2007 15 / 22

# Small Remaining Misalignment: Distortion



- Systematic module misplacement:  $\langle \Delta y \rangle \propto r$
- Equivalent in x fixed by cosmics penetrating full tracker from top.
- ⇒ Small deformations remain: Dominant source of misalignment.
  - But bias small: per mille on p<sub>t</sub> of 100 GeV.

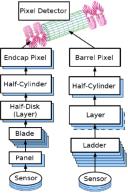
# Combination of Survey and Track Based Alignment

#### Desirable

- Survey connects other module positions.
- $\Rightarrow$  Can fix weak modes of TBA.
  - Stabilises when low hit statistics.
  - Trap: Uncertainty smaller than time stability?
- $\Rightarrow$  Incorporate in sophisticated error analysis.

## HIP Approach: Survey Residuals

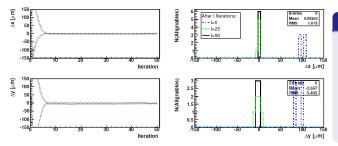
• Minimise simultaneously:


$$\chi^2 = \chi^2_{\textit{track}} + \chi^2_{\textit{survey}}$$

- $\chi^2_{survey}$  based on
- fiducial points
  hierarchical error

## Millepede Approach

- Directly include survey measurements.
- Alternative: Use error as 'prior knowledge'.


## Hierarchical errors:



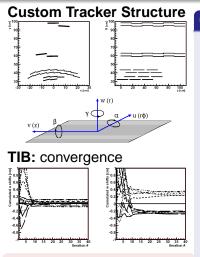
 $\Rightarrow \text{Under} \\ \text{development.}$ 

4 3 > 4 3

# **Pixel Monitoring with Minimum Bias Tracks**



#### **Pixel Barrel**


- Not in Laser system.
- High Level Trigger needs it.
- ⇒ Fast feedback from TBA!

## Feasibility Study (MC)

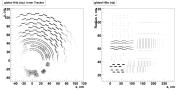
- Aligned tracker (not perfect).
- Large correlated shifts/rot. of 6 half barrel layers.
- Minimum bias tracks from  $\approx 1~h$  (nominal  $\mathcal{L}).$
- Vertex constraint.
- HIP algorithm with 50 iterations:
- $\Rightarrow \text{Recovering: } x/y \text{-position to } \mathcal{O}(10) \ \mu m$ angles to  $\mathcal{O}(100) \ \mu rad$

Half Barrel Layer

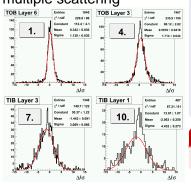
# Experience with Cosmic Ray Data: MTCC



 $\Rightarrow$  First real data, lesson: Geometry description *can* be quite far off.


#### CMS Magnet Test Cosmic Challenge

- Part of CMS operated on surface.
  - $\sim$ 1% of tracker channels
- Data with B = 0..4 T.
  - Use B = 0 T: statistics, straight line
- Start from surveyed module positions.
- iterative HIP algorithm on "rods" (= 3 or 6 modules):
  - $oldsymbol{0}$  align TOB, TIB fixed: local  $\emph{u},\,\gamma$
  - 2) vice versa: local  $\emph{u}, \emph{w}, \gamma$
  - 3 cross check TOB with fixed TIB
  - decreasing Alignment Pos. Error until iteration 10


|        | #tracks | $\langle \chi^2 \rangle$ | $\langle N_{hit} \rangle$ | res. TIB L3    |
|--------|---------|--------------------------|---------------------------|----------------|
| Before | 1460    | 20.1                     | 3.3                       | 416 μ <i>m</i> |
| After  | 4956    | 6.0                      | 4.3                       | 125 µ <i>m</i> |

# Experience with Cosmic Ray Data: TIF

#### Hit maps XY and RZ:



#### **Increasing residuals:** multiple scattering



#### Tracker Integration Facility

- 12.5% of strip stracker read out.
- Different scintillator positions for triggering cosmics.
- Temperature:  $+15 \rightarrow -15^{\circ} \text{ C}$ 
  - also fraction of laser system tested
- Special challenges:
  - Partial tracker:
    - $\Rightarrow$  missing symmetries, hit statistics
  - Low momenta:
    - ⇒ large multiple scattering
  - No *B*-field to measure *p*.
  - Large range of  $\angle$ (track, $\vec{n}$ (sens.)).

(I) < (II) < (II) < (II) < (II) < (III) </p>

#### No Results Yet:

Work ongoing with high priority!

Tracker Alignment in CMS

Vertex 2007 20 / 22

Gero Flucke (Universität Hamburg)

#### Detailed Alignment Strategy of CMS

- Confirmed precise assembly
- 2 Many detailed survey measurements
- Laser system proven to work well
- Track Based Alignment (тва)
  - full scale alignment successfully tested and fast
  - complementary data sets essential:
    - Cosmic Muons
    - 2 Beam Halo Muons
    - (3) minimum bias tracks,  $J/\Psi \rightarrow \mu\mu$
    - 4 Muons from  $Z^0$ ,  $W^{\pm}$
    - **5**  $Z \rightarrow \mu \mu$  with vertex and mass constraint

Combination of Survey, Laser System and TBA

## Summary

- Confirmed precise assembly
- Many detailed survey measurements
- Laser system proven to work well
- Track Based Alignment (TBA)
- Combination of Survey, Laser System and TBA
- Monitoring with time:
  - TIB, TOB, TEC connected via laser system
  - fast turn around of TBA in pixel
- Real data experience currently gained with cosmics.

#### The Right Balance:

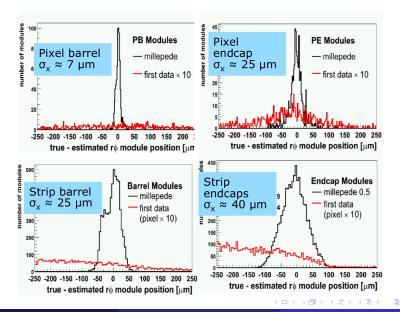
- Optimal results.
- Be in time for first physics.
- ⇒ Confident to increase precision with time according to physics needs.

Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS

Vertex 2007 22 / 22

# Backup


Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS

▶ < E ▶ E ∽ Q C Vertex 2007 23 / 22

- 4 ∃ →

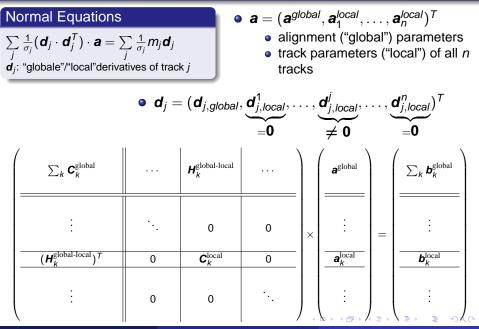
## Millepede: Worsely Pre-Aligned Pixel



Gero Flucke (Universität Hamburg)

# Millepede: Assumed Starting Uncertainties

| hierarchy                           | $_{\rm shift}$                                           | BPIX | TIB | TOB |
|-------------------------------------|----------------------------------------------------------|------|-----|-----|
| half barrel vs. global              | $\Delta x [\mu m]$                                       | 10   | 105 | 67  |
|                                     | $\Delta y \ [\mu m]$                                     | 10   | 105 | 67  |
|                                     | $\Delta z \ [\mu m]$                                     | 10   | 500 | 500 |
|                                     | $\Delta \operatorname{rot}_{z} [\mu \operatorname{rad}]$ | 10   | 90  | 59  |
| ladder/rod vs. half layer/layer     | $\Delta x [\mu m]$                                       | 5    | 200 | 100 |
|                                     | $\Delta y \ [\mu m]$                                     | 5    | 200 | 100 |
|                                     | $\Delta z \ [\mu m]$                                     | 5    | 200 | 100 |
| modules <sup>*</sup> vs. rod/ladder | $\Delta x [\mu m]$                                       | 13   | 200 | 100 |
|                                     | $\Delta y \ [\mu m]$                                     | 13   | 200 | 100 |
| -                                   | $\Delta z \ [\mu m]$                                     | 13   | 200 | 100 |


- similar sizes in endcap like detectors
- pixel pre-aligned with minimum bias tracks
- for misalignment: hierarchically applied

Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS

Image: A matrix

# Millepede Principle: Global Least Squares Fit



Gero Flucke (Universität Hamburg)

Vertex 2007 26 / 22

# Millepede Principle: Matrix Reduction

- We are not interested in full *a* = (*a*<sup>global</sup>, *a*<sup>local</sup>,..., *a*<sup>local</sup>)<sup>T</sup>:
   ⇒ We want *a*<sup>global</sup> only!
- Matrix algebra (inversion by partitioning) helps:

#### **Reduced Matrix**

$$\mathbf{C'a}^{global} = \mathbf{b'}$$

$$\mathbf{C'} = \sum_{k} \mathbf{C}_{k}^{global} - \sum_{k} \left( \mathbf{H}_{k} (\mathbf{C}_{k}^{local})^{-1} \mathbf{H}_{k}^{T} \right)$$

$$\mathbf{b'} = \sum_{k} \mathbf{b}_{k}^{global} - \sum_{k} \mathbf{H}_{k} \underbrace{(\mathbf{C}_{k}^{local})^{-1} \mathbf{a}_{k}^{local}}_{\text{local solution}}$$

- Sums built while running over tracks k.
- **C'** is "small"  $n \times n$  matrix for *n* global (alignment) parameters.

# Millepede: Statistics

Use of just single  $\mu$  and cosmics:

⇒ Cosmics statistics more relevant!

| $Z^0$ (single $\mu$ )      |      | 2M    | 2M   | 1M    | 500k  | 2M             |
|----------------------------|------|-------|------|-------|-------|----------------|
| cosmic $\mu$               |      | 5k    | 25k  | 25k   | 25k   | $5 \times 25k$ |
| barrel r $\phi$ [ $\mu$ m] | mean | -7.3  | -3.2 | -2.2  | -1.4  | -2.6           |
|                            | rms  | 9.0   | 8.6  | 8.7   | 9.3   | 8.1            |
| barrel z [µm]              | mean | -4.5  | -6.9 | -9.8  | -11.9 | -9.9           |
|                            | rms  | 24.2  | 24.6 | 28.9  | 33.2  | 25.2           |
| barrel r [ $\mu$ m]        | mean | 0.0   | 0.0  | 0.2   | 1.2   | 0.0            |
|                            | rms  | 23.5  | 23.1 | 25.6  | 32.3  | 22.7           |
| endcap r $\phi$ [ $\mu$ m] | mean | -9.6  | -6.1 | -4.9  | -4.1  | 0.8            |
|                            | rms  | 22.6  | 22.5 | 24.7  | 26.8  | 22.3           |
| endcap r [ $\mu$ m]        | mean | 1.2   | 1.5  | 1.2   | 1.2   | 1.6            |
|                            | rms  | 26.0  | 25.5 | 28.4  | 32.3  | 25.0           |
| endcap z [µm]              | mean | -10.9 | 13.4 | -17.8 | -24.5 | -16.6          |
|                            | rms  | 52.6  | 51.9 | 53.2  | 52.2  | 51.8           |

Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS

Vertex 2007 2

28/22

# Millepede: Outlier Rejection

| method                     |      | none  | reweighting | $\chi^2  { m cut}$ | reweighting |
|----------------------------|------|-------|-------------|--------------------|-------------|
| iterations                 |      | 1     | 5           | 5                  | 10          |
| barrel r $\phi$ [ $\mu$ m] | mean | 1.9   | -1.9        | 1.1                | -4.3        |
|                            | rms  | 17.9  | 10.3        | 9.6                | 8.4         |
| barrel z [µm]              | mean | -10.9 | -5.9        | -7.0               | -3.3        |
|                            | rms  | 33.7  | 23.9        | 23.6               | 20.9        |
| barrel r [µm]              | mean | -0.8  | -1.0        | -0.9               | -1.0        |
|                            | rms  | 32.7  | 23.2        | 22.8               | 20.5        |
| endcaps $r\phi$ [ $\mu$ m] | mean | -3.1  | -4.7        | -1.3               | -6.9        |
|                            | rms  | 31.47 | 23.4        | 23.0               | 19.9        |
| endcaps r [µm]             | mean | 1.7   | 1.9         | 1.6                | 1.9         |
|                            | rms  | 35.9  | 27.0        | 26.3               | 23.7        |
| endcaps z [µm]             | mean | -6.0  | 0.3         | -0.2               | 2.1         |
|                            | rms  | 44.9  | 42.9        | 42.7               | 40.6        |

#### $\Rightarrow$ Outlier recjection improves substantially!

Gero Flucke (Universität Hamburg)

Tracker Alignment in CMS