ATLAS Pixel Detector Commissioning using Cosmic Rays

Daniel Dobos CERN – Universität Dortmund on behalf of the ATLAS Pixel Collaboration 24.09.07

Vertex 2007 - Lake Placid, NY, USA - 23.-28. September 2007

Outline:

- ATLAS Pixel Detector Overview
- System Test Setup
- Optical Communication Tuning
- Detector Performance
- Cosmics Data
- Conclusions

ATLAS Pixel Detector

- high multiplicity tracking detector; ~ 1200 tracks per bunch crossing
 ⇒ high granularity (80 million channels)
- high impact parameter resolution; ~ 12 μm vertex resolution
 ⇒ high granularity, low mass
- high radiation dose tolerance; ~10¹⁵n_{eq}/cm²
 (NIEL) or 50 Mrad ⇒ low temp. & radiation-hard design tubes, ...)
- Muon Spectrometer: **ATLAS Layout Overview** Monitored Drift Tubes Inner Detector: Resistive Plate Chamber Magnet system: Transition Radiation Tracker Cathode Strip Chamber Central Solenoid Semi-Conductor Tracker Thin Gap Chamber Air-core Barrel Toroid Pixel Detector End Cap Toroids Calorimeter: Forward LAr Calorimeter Ø: 22 m Hadronic LAr End Cap Calorimeter Shielding length: 46 m FM Accordion Calorimeter weight: 7000 tonnes Hadronic Tile Calorimeter
- high time resolution; 40 MHz bunch crossing rate ⇒ fast preamplifier rise time
- high occupancy/long trigger decision; 2 μs Level1 trigger latency ⇒ buffering of hits on-detector
- Iow interaction length; ~10% X₀ (~0.7% per Module)
 - ⇒ low mass (thinned readout electronics, carbon-carbon support structure, aluminum cables and cooling tubes, ...)

Pixel Detector Design Requirements

- high multiplicity tracking detector; ~ 1200 tracks per bunch crossing ⇒ high granularity (80 million channels)
- high impact parameter resolution; ~ 12 μm vertex resolution
 high granularity, low mass
- high radiation dose tolerance; ~10¹⁵n_{eq}/cm²
 (NIEL) or 50 Mrad ⇒ low temp. & radiation-hard design , ...)

- high time resolution; 40 MHz bunch crossing rate⇒ fast preamplifier rise time
- Nigh occupancy/long trigger decision; 2 µs Level1 trigger latency ⇒ buffering of hits on-detector
- **Solution** length; ~10% X_0 (~0.7% per Module) ⇒ low mass (thinned readout electronics, carbon-carbon support structure, aluminum cables and cooling tubes, ...)

Pixel Detector Design

- 3 Barrel layers (r = 5, 9, 12 cm)
- 2 Endcaps with 3 Disks each
- 3 space points for pseudorapidity < 2.5
- 80 million channels in 1744 Pixel Modules
- 1.8 m² active sensor area
- \circ ~ -10°C operating temperature with ~10 kW power load \Rightarrow evaporative C_3F_8 cooling integrated into carbon support structure

operation

1st large scale active pixel

detector (soon) in

ATLAS Pixel Module

- ~ 47k pixels (50 \times 400 μ m) on n⁺np⁺ silicon sensor
- 16 Front-End (FE) chips connected with bump bonds (flip chipping) with the Pixel sensor

- FEs connected with wire bonds to a flexible circuit board (flex: routing and passive components)
- readout of the FEs by a Module Control Chip (MCC) ⇒ module based event building

Pixel Detector Installation

- Pixel Detector Package (detector with service quarter panels) lowered and installed in late June
- next step: cabling of service cables and fibers at PPO

Aim & Operation Mode of the System Test

- verify the performance and interaction of production detector and service components (threshold, noise, cooling, ...)
- test complete infrastructure (HW, SW, procedures) on ~10% of the entire detector (Endcap A, 144 modules, 24 optoboards) ⇒ biggest operated Pixel system so far
- realistic long term operation (shifts, 24/7, experts on-call, ...) to learn for real operation
- 'playground' for procedure and software developments (optical communication tuning, module tuning, tuning analyzes, slow control, DAQ, online monitoring, ...)
- test trigger and DAQ chain with cosmics: (noise occupancy, readout performance, tracking, alignment, ...)

ATLAS Pixel System- and Cosmics-Test at CERN

System Test Setup (Data)

System Test Setup (Low Voltage)

System Test Setup (High Voltage)

System Test Setup (Cooling & Monitoring)

System Test Setup (Interlock)

Services & Cooling

- automated service test system has been developed
- complete services chain tested including interlocks, connectivity information in the slow control software and calibration measurements
- service test system qualified for the test of the services before detector is installed in the pit
- intense development and tests in service communications and slow control software (PP2, finite state machine, detector monitoring)

• Endcap operated with evaporative C₃F₈ cooling, as will be used in the final detector with good performance

All services and cooling fulfill the requirements of the detector

Optical Communication Tuning

- several parameters need to be tuned for the optical data link between on-detector optoboards and off-detector BOC cards:
 - laser power for the optoboard (1 voltage for up to 14 channels)
 - threshold and delays at the BOC receiver side (channelwise)
- challenge: adjust optoboard laser power such that all 7 opto links have a working parameter space

power and channel to channel light spread depends on optoboard temperature

⇒ untunable channels below 5°C

Optical Communication Tuning

heaters have been installed on the optoboards ⇒ all channels behave well at ~20°C

slow turn-on of light power for few channels ⇒ has been addressed in the optoboard quality assurance procedure

probably most of the problems can be explained by not first-choice quality optoboards in the System Test

Module Tuning Performance: Thresholds & Noise

- charge injected into preamplifiers and response after discriminator measured
- nicely correlated with production data and only slightly higher (<10e⁻)

 MIP in 250 µm silicon sensor: mean energy loss 27 ke⁻
 ⇒ with charge sharing ~17 ke⁻
 ⇒ after life-time dose irradiation irradiation ~ 8 ke⁻

Module Tuning Performance: Thresholds & Noise (2)

First Cosmics

- trigger requests hit in top scintillator and any of the bottom scintillators
- hit position within 16 consecutive 'level1' triggers for cosmic triggers show clear cosmic peak above noise floor

charge in time-over-threshold [25ns]

25

20

15

10

5

3000

2000

1000

Noise Occupancy and Sensor Depletion Voltage

n+ implantations

isolated with p-sprays

on n-substrate

- noise occupancy with random trigger vs. sensor bias voltage measurement used to determine depletion voltage
- depletion zone grows towards pixel side ⇒ bias voltage below full depletion - pixel shorted ⇒ high capacitive load to preamplifiers ⇒ high noise ⇒ high noise occupancy

- noise occupancy measured with cosmic trigger
- after removal of noisy (10⁻⁴) pixel noise occupancy as low as 10^{-7} before type inversion
- 90% of noisy pixel identified from production measurements
- total fraction of affected pixels >1%

Monte Carlo vs. Data

- 29 out of 144 modules disabled
- measured trigger rate 15.7 Hz vs. ~ 18 Hz full simulation rate

Hit density at z = -1 7cm for 3 disk hits traks

Entries

Data

>10% of area overlap region with modules on other side $\Delta z = 4.2 \text{ mm}$

Events 4000

3000

2000

Monte Carlo vs. Data (2)

- MC tuned on cosmic data
- theta reconstruction, cluster width and hits on track vs. module agree with MC (hits on track inhomogeneous due to asymmetric scintillator, missing modules & 3 noisy pixels)
- TOT shape correct ⇒ TOT calibration (from production measurements) OK ⇒ shift due to wrong fit parameter C:

$$TOT = A + \frac{B}{(C+Q)}$$

use >10% overlap region between modules on different side of a disk Δz=4.2 mm to determine relative alignment between modules

Survey vs. cosmic alignment for modules with more than 50 hits in the overlap region

Conclusions

- the ~10% System Test was a success and we gained valuable experience for a successful commissioning and the operation of the detector
- various parts of the services have been validated (cooling, services, interlock system)
- huge development step was done in online and offline software driven by the System Test
- difficulties in optical communication tuning were identified in time to take necessary actions before commissioning
- expected good detector performance (threshold, noise, noise occupancy) could be verified and no system specific problems have been observed
- Monte Carlo expectations for cosmic data have been confirmed - recorded data allows us to test the entire reconstruction chain and exercise alignment and resolution studies

SPS, LHC and the LHC experiments

LHC and

its Experiments

beam

dump

- SPS: 450 GeV
- LHC: 26.7 km circumference; 2.7 TeV; 2835 bunches with 10¹¹ protons each
 - \Rightarrow beam current: 0.53 A \Rightarrow beam energy: 668 MJ
 - ⇒ bunch crossing frequency: 40 MHz

momentum

cleaning

- \Rightarrow luminosity: 10^{34} cm⁻² s⁻¹ acceleration LHC
- **ATLAS** & CMS: p-p collisions
- LHC-b: b-physics
- ALICE: heavy ion collisions

CMS

betatron

cleaning

circumference: 26.7 km

injection

The ATLAS Experiment

- diameter: 22 m; length: 46 m; weight 7000 tons
- air-core (⇒ to avoid multiple scattering) barrel toroid magnetic field: 4 T
- central solenoid magnetic field for inner detector: 2 T

basic design criteria:

- electromagnetic calorimetry
- high-precision muon momentum measurement
- efficient tracking
- large acceptance
- triggering and measurement of particles with low transverse momentum thresholds

ATLAS Trigger

- 3 levels of online event selection
- rejection factor of 10⁷ against 'minimum-bias' events
- ▶ LVL1: reduced-granularity muon spectrometer & calorimeters; summing over trigger towers ⇒ sum of jet transverse energies, missing and total transverse energies; flexible implemented ⇒ reprogrammable, non-trivial: size of muon spectrometer implies TOF values comparable to bunch crossing interval; fixed latency
- LVL2: Region-of-Interest information from LVL1 & full precision & granularity information of all sub-detectors if necessary; variable latency
 - EF: offline algorithms & methods on a processor farm with most up to date calibration, alignment & magnet field map information; variable latency

ATLAS Calorimeters

- sampling technique to measure particle- and jet-energies: alternating layers of passive absorber & active detector materials
- TileCal: absorber: Fe; detector: scintillating tiles ⇒ wavelength shifting fibres ⇒ PMT
 - EM calorimeter: absorber: lead; detector: liquid Argon with accordion-shaped ^eb Kapton electrodes ⇒ preamplifier & bipolar shaper outside the cryostat
- NEC calorimeter: absorber: copper; detector: liquid Argon with 3 parallel electrodes: central one for readout two carry 4 kV HV ⇒ preamplifier boards at wheel periphery
- FCAL: absorber: copper & sintered tungsten; detector: liquid Argon with concentric rods at a positive HV & grounded tube electrodes

ATLAS Inner Detector

- high-resolution tracking sub-detectors closest to the interaction point & continuous tracking sub-detectors at the outer radii
- Transition Radiation Tracker: straw detectors can cope with high particle rates & occupancy; 36 space points; charged particle passing through dielectric constant boundary ⇒ mirror charge ⇒ electric dipole ⇒ time dependent dipole field ⇒ transition radiation; Xenon, CO₂, CF₄ gas mixture ⇒ detecting transition-radiation

photons, created in a radiator between the straws, with Xenon ⇒ identification of e⁻; 30 µm gold-plated W-Re wires ⇒ straw lengths < 144 cm; drift-time measurement

- ⇒ track resolution of 50 µm
 - Semiconductor Tracker:
 eight high-precision space
 points per track with
 Silicon microstrip detectors
 with 80 µm pitch and 40
 mrad stereo angle
 - ⇒ 6.2 million channels; front-end amplifier followed by discriminator; track resolution of 16 μm in Rφ direction and 580 μm in z direction
- Pixel Detector ...

Tracking and Vertexing:

Measure sometimes (40 million times a second) many (three) ultimate precise (~12 µm) space—points at zero distance (r_{min} ~5 cm) to the interaction point of few (1000) particle tracks with a perfect (>97% overall efficiency), radiation hard (>1·10¹⁵ $n_{MeV\ eq}$ /cm²), massless (X_0 <10%) and full coverage (pseudo rapidity < |2.5|) detector and readout some (75k/s) selected events.

I bet one of my legs that it's easy

ATLAS Pixel Package

- active surface only in the 1.3 m long central detector section
- BeamPipe Support Structure (BPSS) connected at both ends position the beampipe in the middle of the detector and support Service Quarter Panels (SQP)
- in total eight SQPs provide all services to the detector
- cooling tubes and electrical module connections at PPO
- optoboard mounted at PPO provide optical/ electrical conversion
- all services break at PP1

ATLAS Pixel Detector

- 3-hit (3 layers and 3 disks) semiconductor detector closest to the interaction point \Rightarrow track resolution of 12 µm in R ϕ and of 100 µm in z direction \Rightarrow 1744 modules
- \Rightarrow required radiation tolerance: up to 10^{15} n_{eq} cm⁻² (B-layer)

overall efficiency aim: $> 97 \% \Rightarrow good$ charge collection even after irradiation

ATLAS Pixel Sensor

- type inversion during irradiation \Rightarrow oxygen rich Si improves radiation tolerance for pion and proton irradiation
- ⇒ depletion zone has to reach pixel implantations \Rightarrow n⁺np⁺ design ⇒ not fully depleted sensor still can detect particles
- p implantations necessary to isolate pixels
 - \Rightarrow p-stop: alignment risk & high lateral maxima of electric field at bulk-oxide-p+ junction
 - ⇒ p-spray: high lateral maxima of electric field at bulkp⁺-n⁺ junction
 - ⇒ moderated p-spray

Preamplifier and discriminator signal shapes

- preamplifier output signal proportional to the collected charge; feedback current decreases signal lineary ⇒ discriminator used to digitalize signal \Rightarrow time over threshold (TOT) proportional to the collected charge
- each pixel can be tuned individually by changing the threshold and the feedback current

1000 2000 3000 4000 5000 6000 7000 8000 9000

- without noise: step function expected ⇒ all collected charges above threshold visible and collected charges below threshold are not detectable
- pixel/preamplifier noise ⇒ convolution
 pixel/preamplifier noise → con of the step function and the Gaussian pixel noise distribution ⇒ error function
- ¬
 ⇒ 50% efficiency: threshold
- > noise inversely proportional to the stepness of the transition from no detected hits to full efficiency

10

0

Threshold and

noise of a pixel

iniected charge [e

Phenomenology of the good-parameter-space

- optoboard channel dependent lower threshold band increases linearly with ViSet
- upper threshold band with much higher slope as well
- module (cable length) dependent delayerror band with threshold and ViSet stable upper and wide tailed lower edge
- → good-parameter -space is reduced with increasing ViSet in upper-left direction

Decreasing good-parameter-space with increasing ViSet

sector 9034 - optoboard 2029 - BAD

Slow turn on behaviour (BOC scan)

Noise Occupancy at the edge of the depletion voltage

- after type inversion depletion zone grows from pixel (n+) to p+ side
- before type inversion depletion zone grows towards pixel implantations
- 'under depleted' => all pixel short-circuited => high capacitive load to FE preamplifiers => high noise => high noise occupancy