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Conventional CMOS MAPSConventional CMOS MAPS
Principle of operation:

Signal generated by a particle is 
collected by an n-well/p-epitaxial diode, 
then readout by CMOS electronics 
integrated in the same substrate

Ch t d b th i id tElectronics and 
interconnections

Epi layer (~10um 
thick)

Charge generated by the incident 
particle moves by thermal diffusion

Extremely simple in-pixel readout (3-T 
NMOS, PMOS not allowed) 

Substrate (~300um 
thick)

, )

Several reasons make CMOS MAPS appealing as tracking devices: 

Detector and readout on the same substrate

Wafer can be thinned down to tens of μm  ⇒ minimal amount of material in 
the detector region (e.g. with respect to hybrid pixel)

Deep sub-micron CMOS tecnology ⇒ high functional density and versatility, low power 
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consumption, radiation tolerance and fabrication costs
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Deep Nwell sensor conceptDeep Nwell sensor conceptp pp p
In triple-well CMOS processes a deep N-well is used to shield N-channel 
devices from substrate noise in mixed signal circuitsdevices from substrate noise in mixed-signal circuits

DNW MAPS is based on the same 
ki i i l t d d MAPSworking principle as standard MAPS

A DNW is used to collect the charge 
l d h l l

A charge preamplifier is used for Q-V conversion gain decoupled from 

released in the epitaxial layer

DNW may house NMOS transistors 

g p p Q g p
electrode capacitance

Using a large detector area, PMOS devices may be included in the front-
end design charge collection inefficiency depending on the ratio of the 
DNW area to the area of all the N wells (deep and standard)
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DNW area to the area of all the N-wells (deep and standard)



5APSEL series chipsAPSEL series chips
SLIM5 Collaboration:

INFN & Italian Universities 
Pisa, Pavia, Bergamo, Bologna, Trento, 
Trieste, Torino

Full in-pixel signal processing:                                   
PA + shaper + comparator + latch

Prototypes fabricated with the STMicroelectronics 
130nm triple-well technology 

High sensitivity charge preamplifier with 
continuous reset + RC-CR shaper with 
programmable peaking time 

A threshold discriminator is used to drive a NOR 
latch featuring an external reset

Pixel size about 50μm x 50μm
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The first prototypes proved the capability of the 
sensor to collect charge from the epitaxial layer 



6Design specifications for the               Design specifications for the               
ILC vertex detectorILC vertex detector

The beam structure of ILC will feature 2820 crossings in a 1 ms bunch 
train, with a duty-cycle of 0.5%

ILC vertex detectorILC vertex detector

bunch train interval intertrain interval

assuming maximum hit occupancy 0.03 part./Xing/mm2

if 3 pixels fire for every particle hitting hit rate ≈ 250 hits/train/mm2

bunch train interval intertrain interval

if a digital readout is adopted 5μm resolution requires 17.3 μm pixel pitch

15 μm pitch  Oc ≈ 0.056 hits/train  0.0016 probability of a pixel being hit at
least twice in a bunch train period

A pipeline with a depth of one in each cell should be sufficient to 
record > 99% of events without ambiguity 
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Data can be readout in the intertrain interval system EMI insensitive



7

Sparsified readout architectureSparsified readout architecturepp

In DNW MAPS sensors for ILC sparsification is based on a token 
passing readout scheme suggested by R. Yarema (R. Yarema, “Fermilab 
Initiatives in 3D Integrated Circuits and SOI Design for HEP”, ILC VTX Workshop at Ringberg, May 2006)

MAPS ti i t il d th t t f ILC b

Detection phase (corresponding to the bunch train interval) 

Readout phase (corresponding to the intertrain interval)

MAPS sensor operation is tailored on the structure of ILC beam  

Readout phase (corresponding to the intertrain interval)
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Pixel level processorPixel level processorpp
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9Cell digital sectionCell digital section
Get X bus Get Y bus

Includes a 5 bit time stamp register and the data 
sparsification logic

During the bunch train period, the hit latch is set in 
each hit pixel

When the pixel is hit, the content of the time stamp 

To the time 
stamp buffer

Master Reset
4T

p , p
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10ILC DNW elementary cellILC DNW elementary cell
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11Digital readout schemeDigital readout scheme
4
4
5 MUX
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Y
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Readout CK

Readout phase: 

• token is sent
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Time 
Stamp

Time 
Stamp

Time 
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5 T Serial data 
output

Cell CK
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Power dissipation analysisPower dissipation analysis
Because low material budget is necessary, there is little room for cooling 

t l ti

p yp y

system             very low power operation

Analog power: Pan,pix ≈ 5μW/pixel (dissipated in the analog PA)

Digital power: PDC,pix ≈ 7 nW/pixel (leakage currents of the digital blocks)

Pdyn,pix ≈ 20 nW/pixel (to charge the input capacitance of the time 

stamp register blocks during the detection phase)

(power in the periphery
neglected since it grows
as the square root of the
number of matrix cells)

MNMNMN δδ PPPP

)

PpixdynpixDCPpixan MNMNMN δδ ⋅⋅⋅+⋅⋅+⋅⋅⋅= ,,, PPPPtot

13 6 W 1 9 W 0 05 W≈ 15.5 W

N= number of cell per pixel

Assuming: 
- 170000mm2 total vertex detector area (pixel pitch of 25 μm);

1 M i l hi

13.6 W 1.9 W 0.05 W15.5 W
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N  number of cell per pixel 
M= number of chip composing the detector 

- 1 Mpixel chips; 
- δP=0.01 power supply duty cycle
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3D device simulations3D device simulations
Standard N-well

The simulated structure (with TCAD)
required a mesh with 165000 vertices.
Because of the really long computation time

MAPS operation is mainly diffusion driven

Because of the really long computation time
only 36 simulations, each involving a
different MIP collision point, have been
performed

MAPS operation is mainly diffusion driven
computing power required by TCAD may

not be needed

Deep N-well 
collecting electrode

Monte Carlo code based on random walk
developed (results of a collaboration with
D. Christian – Fermilab)

Activity presently focused on finely tuning
a three-dimensional diffusion model for

TCAD simulations Monte Carlo simulations

Advantage: dramatic reduction in
computin time

a three dimensional diffusion model for
Monte Carlo simulations of MAPS by
comparison with TCAD simulation results

computing time

Next step: take advantage of fast Monte
Carlo simulator to maximize detection
efficiency through suitable layout choice

Sept. 23 - 28, 2007 – Lake Placid, NY, USA 16th International Workshop on Vertex Detectors
Charge collected by the central pixel in the 3×3 SDR0 matrix
Physical simulation performed by E. Pozzati - University of Pavia (Italy)

y g y



14The demonstrator chip (SDR0)The demonstrator chip (SDR0)

The chip includes:

8 x 8
matrix

The chip includes:

a 16 by 16 MAPS matrix (25 μm 
pitch) with digital sparsified 
readoutreadout 

an 8 by 8 MAPS matrix (25 μm 
pitch) with digital sparsified 
readout and selectable access to 
the output of the PA in each cell 

a 3 by 3 MAPS matrix (25 μm 
pitch) with all of the PA output 
accessible at the same timeaccessible at the same time

3 standalone readout channels 
with different  CD (detector 
simulating capacitance)

Single pixel test16 x 16 3 3

Delivered end of July 2007
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Single pixel test 
structures

16 x 16
matrix

3 x 3
matrix



15The SDR0 test boardThe SDR0 test board

Test board designed by Marcin Jastrzab
U i it f S i d T h l C

Credit: Fabio Risigo University 
of Insubria, Como (Italy)
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University of Science and Technology, Cracow 
(Poland) and University of Insubria, Como (Italy)

, ( y)
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ConclusionsConclusions
New DNW MAPS structures with optimized noise and threshold 
dispersion characteristics have been fabricated in the 130 nm, 
triple well STM CMOS technology

Study of the charge collection efficiency and of charge y g y g
spreading in the epi-layer is underway to assess their suitability 
for tracking and vertexing applications

Monte Carlo method will be used, besides Synopsys TCAD 
software package, in the design of the next generation 
prototype chips 

Characterization of a DNW MAPS demonstrator aimed at 
vertexing applications at the ILC is foregoing

Plans for the future: 

design of a 256 x 256 matrix for beam test

evaluation of more scaled technologies (90 nm CMOS) 
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Backup slidesBackup slidesBackup slidesBackup slides
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18Digital signal diagramDigital signal diagram
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19Parameter mismatchParameter mismatch

Identically designed components always show discrepancies in the values of
electrical parameters. Fluctuations are induced by microscopic variations in
physical quantities (e.g. oxide thickness, doping concentration, device
dimensions).

In CMOS transistors threshold voltage Vth and channel transconductance gm
are typically affected; for instance, the threshold voltage variation ΔVth has
a normal distribution with zero mean and a variance σ2(ΔVth) inversely
proportional to the device gate area:proportional to the device gate area:

A2
vth2

Avt is a constant provided by the 
f d d i l d d i th d i

As a design rule σ can be reduced by acting on the device dimensions

LW
Avth

Vth ⋅
=σ2

Δ foundry and included in the device 
parameter set

As a design rule, σΔVth can be reduced by acting on the device dimensions

In the case of a charge processor with binary readout, parameter
dispersion affects both the analog an the digital section
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20Design specifications for the               Design specifications for the               
ILC vertex detectorILC vertex detectorILC vertex detectorILC vertex detector

SDR0 prototype

Detection efficiency for different sensor pitch and hit rate values

Sept. 23 - 28, 2007 – Lake Placid, NY, USA 16th International Workshop on Vertex Detectors
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3D device simulations3D device simulations

TCAD simulations Monte Carlo simulations Simulations with Monte Carlo code
have been performed with the
following assumption:following assumption:

80 e-h/μm are generated uniformly
along a linear track which is normal to the
device surface and feature a gaussian

Charge collected by the central pixel in the 3×3 SDR0 matrix
Physical simulation performed by E Pozzati University of Pavia (Italy)

g
distribution in the plane normal to the
track itself (σ=0.5 μm).

The SDR0 simulation volume is
85x85x80 μm3Physical simulation performed by E. Pozzati - University of Pavia (Italy)

E. Pozzati, M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi:

85x85x80 μm3.

Electron lifetime, according to the
Scharfetter model is about 9.2 μs at the
considered doping levels (1015 cm-3) and

l h d lk d
g p

“MAPS in 130nm triple-well CMOS technology for HEP applications”
Topical Workshop on Electronics for Particle Physics, TWEPP 2007,
Sept. 3-5, Prague, Czech Republic

sets a limit to the random walk duration
for each carrier.

Sept. 23 - 28, 2007 – Lake Placid, NY, USA 16th International Workshop on Vertex Detectors



22

3D device simulations3D device simulations
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23Power cycling simulationsPower cycling simulations
Power cycling can be used to reduce average dissipated power by switching 
the chip off when no events are expected

Example:

ILC bunch structure:  ~330 ns spacing, ~3000 bunches, 5Hz pulse

The analog section in the elementary cell can be switched off during the 
intertrain interval in order to save power (analog power is supposed to be 
predominant over digital)

Based on circuit simulations, power 
cycling with at least 1% duty-cycle

f iblPreamplifier

0.6

V

Preamplifier seems feasible

Switch-on 
transient

Preamplifier 
pulse response

0 2

0.4

Preamplifier 
pulse response

60 ms

1.2

0.0

0.2

OFF

Sept. 23 - 28, 2007 – Lake Placid, NY, USA 16th International Workshop on Vertex Detectors

199 ms
0.0

ONOFF



24

Noise performance analysisNoise performance analysisp yp y
For the forward stage of the 
charge preamplifier, a single 0GG(s) =charge preamplifier, a single 
pole transfer function can be 
reasonably assumed: 0

1
ω
sG(s)

+
=

A
f
ASe F

Ws +=

Si Parallel noise contribution

Input referred series 
noise of the charge PA

CD

FFPi CRSENC ⋅⋅≈Parallel noise contribution

PF Si = Parallel noise contribution 
in the feedback network

FFPi CRSENC
F

Parallel noise contribution

GBPCCSENC FTW ⋅⋅≈Series white noise contribution

CT= CD + Cin +CF

Cin is the charge PA 
input capacitance

2,
CCSENC FTWe WSs

∞→ENCSeries 1/f noise contribution

The mean square value of the noise due to 1/f 
contribution slowly diverges. Actually, divergence 
is so slow that this contribution is not supposed
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→
fs,e

ENC
1

is so slow that this contribution is not supposed 
to affect significantly the noise properties of the 
analog front-end (in field operation times). 
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Noise inNoise in CMOSCMOS transistorstransistors
Noise in the drain current of a MOSFET can be represented through an equivalent noise 
voltage source in series with the device gate

(f)SS(f)S 2
1/f

2
W

2
e +=

SW - white noise

• channel thermal noise (main contribution 
in the considered operating conditions)

D
G

( )( ) 1/fWe

m

B2
ch g

T4kS Γ=
• kB Boltzmann’s constant

• T  absolute temperature

• Γ channel thermal noise     
coefficientG

• contributions from parasitic resistances

S1/f - 1/f noise2S

S

1/f /

• technology dependent contribution

fWLfC
k(f)S f2

1/f α=
• kf 1/f noise parameter

• αf 1/f noise slope-related 

2
PS

fWLfCOX
α f p

coefficient

G
2
P 2qIS =

2 2qIS =

SP – shot noise in the 
gate leakage current
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Flicker noise Flicker noise –– SS1/f1/f(f)(f)1/f1/f( )( )
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Slope αf of the 1/f noise term is significantly smaller than 1 in NMOS transistors 
and larger than 1 in PMOS devices

Frequency  [Hz] Drain Current [mA]

In the examined operating region, αf does not exhibit any clear dependence on the 
drain current or on the channel length 

αf between 1 and 1.3 for PMOS devices, between 0.8 and 1 for NMOS devices
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1Università degli Studi di Pisa, 2INFN Pisa, 
3Scuola Normale Superiore di Pisa, 
4Università degli Studi di Pavia, 5INFN Pavia, 
6Uni e sità degli St di di Be gamo

4 Workpackages:
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6Università degli Studi di Bergamo, 
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2 Detectors on high-resistivity Silicon
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4 Mechanics/Integration/Test Beam
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