
Motivation Framework

Framework for Accuracy and Performance Testing
of Mathematical Libraries

Ladislav Horky

Department: PH-CMG-CO

Home Institute: Faculty of Nuclear Science and Physical Engineering,
Czech Technical University, Prague

Supervisor: Danilo Piparo

August 13, 2012

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework

Why?

When developing a fast math library, you can trade accuracy
for speed.

You need to know, how accurate function are before using
them.

Some free fast libraries which do not respect IEEE accuracy
standards do not provide full documentation about it.

→ You need to measure function accuracy and performance
across many libraries.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework

Why?

When developing a fast math library, you can trade accuracy
for speed.

You need to know, how accurate function are before using
them.

Some free fast libraries which do not respect IEEE accuracy
standards do not provide full documentation about it.

→ You need to measure function accuracy and performance
across many libraries.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Features

Arithmetic performance comparison against arbitrary reference
implementation (e.g. libm)

Time performance measurement

File persistence for all results

Histograms

Fully command-line

Easily extendable to new libraries

Uses C++11

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Reminder: Floating point representation

Arbitrary real number cannot be stored in floating point datatype.
Only values of special form specified IEEE 754 standard for base 2
can be represented (showing float case):

x = (−1)s︸ ︷︷ ︸
sign

(1 +

23∑
i=1

bi2
−i

︸ ︷︷ ︸
mantissa

)× 2(e−127)︸ ︷︷ ︸
exponent

where s, bi ∈ {0, 1}

In the memory this data are stored as:

Here, the decimal number -12 is represented (precisely).

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Floating point precision II

Handling floating point numbers in decimal notation may
results in imprecise output.

→ Do not rely on standard in/out methods.

→ Treat these numbers as bit (hex) strings instead
→ full information preserved.

In our case, we would represent -12 as
1100 0001 0100 0000 0000 0000 0000 0000
or as 0xC1400000

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Floating point precision II

Handling floating point numbers in decimal notation may
results in imprecise output.

→ Do not rely on standard in/out methods.

→ Treat these numbers as bit (hex) strings instead
→ full information preserved.

In our case, we would represent -12 as
1100 0001 0100 0000 0000 0000 0000 0000
or as 0xC1400000

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Floating point precision II

Handling floating point numbers in decimal notation may
results in imprecise output.

→ Do not rely on standard in/out methods.

→ Treat these numbers as bit (hex) strings instead
→ full information preserved.

In our case, we would represent -12 as
1100 0001 0100 0000 0000 0000 0000 0000
or as 0xC1400000

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Floating point precision II

Handling floating point numbers in decimal notation may
results in imprecise output.

→ Do not rely on standard in/out methods.

→ Treat these numbers as bit (hex) strings instead
→ full information preserved.

In our case, we would represent -12 as
1100 0001 0100 0000 0000 0000 0000 0000
or as 0xC1400000

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Precision comparing

Finding the most significant different bit:
1001110010001001110 ↓
1001110001111010010 −
0000000000001111100

Measuring precision in terms of different bits.

Applying this to the whole type instead of mantissa only is
logically valid.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Precision comparing

Finding the most significant different bit:
1001110010001001110 ↓
1001110001111010010 −
0000000000001111100

Measuring precision in terms of different bits.

Applying this to the whole type instead of mantissa only is
logically valid.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Precision comparing

Finding the most significant different bit:
1001110010001001110 ↓
1001110001111010010 −
0000000000001111100

Measuring precision in terms of different bits.

Applying this to the whole type instead of mantissa only is
logically valid.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Sample plots

Figure : Acceptable different bit
distribution

Figure : Fast inverse sqrt
behavior (Quake III)

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Performance measurement

Harder than it looks.

Single function execution → nanoseconds → impossible
→ measure the loop across several (thousand) iterations.

In many libraries you even cannot measure single function due
to vector signatures.

Measuring large number of iterations (> 50000) in several
trials to remove statistical fluctuations proved sufficient.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Framework benefits

Easily controllable and extendable code.

Modular, decoupled stages - function response saving,
arithmetic comparison, plots, performance testing.

No hardcoded things (cmd options).

Histograms serves as ultimate tool for possible function
debugging - you can see, where the error can be.

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

C++11 features used

template typedefs

STL template metaprogramming (std::function,
std::tuple)

constexpr - way to get rid of #define constants

auto - automatic type deduction

Which helps in general to:

move things from runtime to compiletime

ease work with large amount of templates

enhance program logic and structure without any overhead at
runtime (!)

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Generated file example

Contents of file generated by an arithmetic comparison stage
(blah Asinfv comparison.txt):

Ladislav Horky Framework for Mathematical Library Testing



Motivation Framework Precision Performance Benefits

Thank You.
Questions.

Ladislav Horky Framework for Mathematical Library Testing


	Motivation
	Framework
	Precision
	Performance
	Benefits


