Set-up and test of a MicroMegas detector for the simultaneous measurements of \((n,g)\) and \((n,f)\) reactions in \(^{235}\text{U}\) at \(\text{n\textunderscore TOF}\)

Summer Student Program 2012 at n\textunderscore TOF Collaboration

Universidad de Sevilla (Spain)

Sabaté Gilarte, Marta
CERN n_TOF (neutron Time of Flight) facility
The n_TOF facility at CERN

n_TOF (*) is a spallation neutron source based on 20 GeV/c protons from the PS of CERN

(*) C Rubbia et al., A High Resolution Spallation Driven Facility at the CERN-PS to measure Neutron Cross Sections in the Interval from 1 eV to 250 MeV, CERN/LHC/98-02(EET) 1998.
n_TOF facility

Main features of the n_TOF:

- **Proton intensity** \(8 \times 10^{12}\) p/pulse
- **Proton beam momentum** 20 GeV/c
- **Proton pulse width** 6 ns (rms)
- **High instantaneous n flux** \(10^5\) n/cm\(^2\)/pulse
- **Wide energy spectrum** \(25\) meV\(<E_n<1\)GeV
- **Low repetition rate** < 0.8 Hz
- **Good energy resolution** \(\Delta E/E = 10^{-4}\)

Neutron beam + state-of-the-art detectors and acquisition systems make n_TOF UNIQUE for:

- measuring **radioactive isotopes**, in particular **actinides**
- identifying and studying **resonances** (at energies higher than before)
- extending **energy range** for fission (up to 1 GeV !)

Sabaté Gilarte, Marta
Simultaneous Measurement of Neutron - Induced Capture and Fission Reaction at CERN

- **Motivation:**

 Measure with high accuracy the capture cross-section of fissile isotopes

 Nuclear Technology:
 - Design and operation of current and innovative nuclear system
 - Reduction of the nuclear waste
 - Accelerator Driven Systems (ADS) and Gen-IV reactors

- **HOW?**

 - Combining two detectors:

 TAC (Total Absorption Calorimeter) --- neutron-capture fission signal in coincidence
 MicroMegas (MGAS) --- fission fragments

 - Extract γ-ray background emitted in fission reaction

 - Calculate the α - ratio:
 \[
 \alpha = \frac{\text{radiative capture cross-section}}{\text{fission cross-section}} = \frac{\sigma_r}{\sigma_f}
 \]
My Contribution: MGAS’test

- Mounting and testing the detector
- Studying the behavior of the signals
- Data analysis
 - Identify noise, α – particle region and fission fragment events
 - Get a very preliminary fission cross section of 235U
 - Compare with ENDF (Evaluated Nuclear Data File)
- Objective:
 - Determination of (n,f) cross section of 235U to extract γ-ray background from the TAC’s signal and, this way, obtain the (n,g) cross section
μMEGAS Detector Concept

- μMEGAS is a gaseous parallel plate detector:
 - Anode Pad: conductor printed on an insulator board
 - Constant Gap over the active area
 - Cathode: thin metallic micromesh
 - Drift electrode parallel to the mesh defining a gas-filled region where electrons are drifted towards the mesh

For neutrons and photons beam, it’s necessary a converter in order to create charged particles which ionize the gas. This is the sample located on the drift electrode.

- Operating Principle
 - Ionization produced by the charged particles take place in the first region (~1 kV/cm)
 - Electrons produced are multiplied in an avalanche process in the second region (~50 kV/cm) resulting in a large number of electron-ion pair
 - Electrons are collected in the pad → fast current signal → fast rise
 - Ions are collected in the mesh → charge signal → tail

- Micromesh and Microbulk technology
Detector Mounting

Sabaté Gilarte, Marta
Testing and Installation

- 8 samples of 235U
- 2 detectors with 2 samples back to back

Sabaté Gilarte, Marta
Signal Behavior

number of protons $= 1.44605 \times 10^{17}$

Sabaté Gilarte, Marta
Very Preliminary Results: 235U fission Cross - Section

![Graph showing preliminary fission cross section for 235U](image.png)
Summary

- Response of the detectors:
 - Differences between detectors is caused by the gain and the mass of the samples. In addition, we noticed that there is a systematic error associated with the signal in the detector 2.
 - The shape of the signal is what we expect.
 - We need to improve our analysis routine to remove some invalid signals.

- We obtained a very preliminary fission cross section:
 - Our cross section is integrated with the size of the bin while ENDF-cross section is absolute value, therefore we can’t compare directly our result → normalization → comparison.
 - Resonances are well located but the height is not the same → normalization factor for each detector to compensate main systematic errors.

- It is only the first step in the current experiment.

 Next step is study the signals from the TAC detector, select the windows of coincidence, analysis the data, compare and get the neutron capture cross section with accuracy for 235U.
 This is a job for a PhD.
References

- **MEASUREMENTS OF NEUTRON-INDUCED CAPTURE AND FISSION REACTIONS ON 235u: CROSS SECTIONS AND α RATIOS, PHOTONS STRENGTH FUNCTIONS AND PROMPT γ-RAY FROM FISSION.** C. Guerrero, E. Berthoumiex, D. Cano-Ott and the n_TOF collaboration. *CERN-intc-2011-045/ INTC-P-309*

Acknowledgements

I thank my supervisors Carlos Guerrero (CERN, CIEMAT) and Eric Berthoumieux (CERN, CEA) for all the time that they have dedicated to teach me about experimental physics, was an interesting experience in this field. I also thank all the people of the n_TOF collaboration and his Spokesperson, Enrico Chiaveri, who help me to understand the meaning of work in group is.

Specially, people from my University in Seville, Javier Praena and José Manuel Quesada who supported and trusted me to do this job.

Summer Student Team and all students who like me came here to work and found more than an academic experience.

Thanks !!!