Measurement of WW and ZZ production with the ATLAS detector

Andy Nelson1
for the WW and ZZ analysis groups

1University of California, Irvine

October 10, 2012
Why is measuring WW and ZZ cross sections important?
- Diboson processes provide a test of important properties of the Standard Model
- Differences between measured and predicted SM cross sections can indicate new physics
- Major backgrounds to Higgs and other new physics processes

Measured cross sections both 7 TeV and 8 TeV

Here we present measurements of the total cross section using reconstructed electrons and muons and E_T^{miss}
- ℓ will refer to electrons or muons
Measurements

- $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^- \ 4.7 \text{ fb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ (ATLAS-CONF-2012-026)
- $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^- \ 5.8 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$ (ATLAS-CONF-2012-090)
- $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu} \ 4.7 \text{ fb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ (ATLAS-CONF-2012-027)
- $WW \rightarrow \ell^+ \nu \ell^- \bar{\nu} \ 4.7 \text{ fb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ (ATLAS-STDM-2012-01, to be submitted to PRD)
ZZ and WW Cross Sections

- Measure both fiducial and total cross sections
- \(ZZ \) is measured in the \(\ell^+\ell^-\ell'^+\ell'^- \) and \(\ell^+\ell^-\nu\bar{\nu} \) final states
- \(WW \) is measured in the \(\ell^+\nu\ell^-\bar{\nu} \) final state
- \(ZZ \) and \(WW \) are produced from \(q\bar{q} \) and \(gg \) in both \(t \) and \(u \) channels
Measurement at 7 TeV
- Four and only four leptons (two positively and two negatively charged)
- $p_T > 7$ GeV
- $|\eta| < 2.7$
- Invariant mass of lepton pairs between 66 and 116 GeV

Measurement at 8 TeV
- Four and only four leptons (two positively and two negatively charged)
- $p_T > 15$ GeV
- $|\eta| < 2.5$
- Invariant mass of lepton pairs between 66 and 116 GeV
- No pair of leptons with $\Delta R < 0.2$ ($\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$)
Figure: Invariant masses of the lepton pairs at 7 TeV (left) and 8 TeV (right)
Two and only two oppositely charged leptons

\(p_T > 20 \text{ GeV} \)

\(|\eta| < 2.5\)

Component of vector sum \(p_T \) of neutrinos parallel to reconstructed \(Z > 80 \text{ GeV} \) (axial-\(E_T^{\text{miss}} \))

Relative difference of \(E_T^{\text{miss}} \) and \(p_T^Z < 0.6 \)

Reject events with a well-reconstructed jet of \(p_T > 25 \text{ GeV} \) and \(|\eta| < 4.5\)
Figure: E_T^{miss} (left) and axial-E_T^{miss} (right)
Two and only two oppositely charged leptons

- Leading lepton $p_T > 25$ GeV
- p_T of subleading leptons have $p_T > 20$ GeV
- $p_T^{\ell\ell'} > 30$ GeV
- Muons have $|\eta| < 2.4$; electrons have $|\eta| < 2.47$, excluding the transition region ($1.37 < |\eta| < 1.52$)
- Component of vector sum p_T of neutrinos perpendicular to the nearest lepton or jet (unless it is more than $\pi/2$ away) is called E_T^{miss}

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss}</td>
<td>> 45 GeV</td>
<td>> 45 GeV</td>
<td>> 25 GeV</td>
</tr>
<tr>
<td>$E_{T,\text{Rel}}$</td>
<td>> 45 GeV</td>
<td>> 45 GeV</td>
<td>> 25 GeV</td>
</tr>
</tbody>
</table>

- Low mass cut and Z veto:

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\ell\ell'}$</td>
<td>> 15 GeV</td>
<td>> 15 GeV</td>
<td>> 10 GeV</td>
</tr>
<tr>
<td>$</td>
<td>m_{\ell\ell'} - m_Z</td>
<td>$</td>
<td>> 15 GeV</td>
</tr>
</tbody>
</table>

- Reject events with a well-reconstructed jet of $p_T > 25$ GeV and $|\eta| < 4.5$
Figure: $m_{\ell\ell'}$ for the ee (left) and $\mu\mu$ (right) channels

Figure: $m_{\ell\ell'}$ for the $e\mu$ channel
Figure: $E_{\text{miss}}^{\text{T,Rel}}$ for the ee (left) and $\mu\mu$ (right) channels

Figure: $E_{\text{miss}}^{\text{T,Rel}}$ for the $e\mu$ channel
Systematic Uncertainties

- Systematic uncertainty in the $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$ channel is dominated by electron identification efficiency and muon reconstruction efficiencies.
 - For electrons these uncertainties are:

Channel	$e^+e^-e^+e^-$	$e^+e^-\mu^+\mu^-$
7 TeV	5.8%	2.8%
8 TeV	3.8%	1.9%

- For muons these uncertainties are:

<table>
<thead>
<tr>
<th>Channel</th>
<th>$\mu^+\mu^-\mu^+\mu^-$</th>
<th>$e^+e^-\mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td>1.3%</td>
<td>0.6%</td>
</tr>
<tr>
<td>8 TeV</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

- The dominant systematic uncertainty in the $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ and $WW \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ channels come from the jet veto efficiency, and are 5.3% and 3.6%, respectively.
Cross Section Definition

- Measure fiducial cross section in phase space close to acceptance to reduce theory dependence:

\[
\sigma_{\text{fiducial}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\mathcal{L} \times C_{VV}}
\]

(1)

- Where \(\mathcal{L}\) is the integrated luminosity and \(C_{VV}\) is a correction factor \(C_{VV} = \frac{N_{\text{reconstructed}}}{N_{\text{Fiducial Generated}}}\). \(N_{\text{reconstructed}}\) is the number of reconstructed events after applying corrections to Monte Carlo.

- Total cross section is calculated by applying an acceptance factor to include the full space and the branching fraction.

\[
\sigma_{\text{total}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\mathcal{L} \times C_{VV} \times B\mathcal{F} \times A_{VV}}
\]

(2)
Cross sections are calculated using maximum likelihood fit. Poisson functions are used to model the number of observed events. Systematic uncertainties by either treating them as nuisance parameters in the maximum likelihood fit, or by error propagation.

For example, the likelihood equation for the WW channel is:

$$L(\sigma_{WW}^{\text{tot}}) = \ln \prod_{i=1}^{3} e^{-N_s^i + N_b^i} \times \frac{(N_s^i + N_b^i)^{N_{\text{obs}}^i}}{N_{\text{obs}}^i!}$$ \hspace{1cm} (3)
Table: \(ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^- \) Fiducial Cross Sections

<table>
<thead>
<tr>
<th>Channel</th>
<th>Measured Cross Section (fb)</th>
<th>Predicted (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell^+ \ell^- \ell'^+ \ell'^-)</td>
<td>(21.2^{+3.2}{-2.7}) (stat.) (+1.0^{+1.0}{-0.9}) (syst.) (\pm 0.8) (lumi.)</td>
<td>(19.0^{+1.1}_{-1.0})</td>
</tr>
<tr>
<td>(e^+e^-e^+e^-)</td>
<td>(6.3^{+1.5}{-1.3}) (stat.) (+0.4^{+0.4}{-0.3}) (syst.) (\pm 0.2) (lumi.)</td>
<td>(4.2^{+0.2}_{-0.1})</td>
</tr>
<tr>
<td>(e^+e^-\mu^+\mu^-)</td>
<td>(4.9^{+1.1}{-1.0}) (stat.) (+0.1^{+0.1}{-0.0}) (syst.) (\pm 0.2) (lumi.)</td>
<td>(4.2^{+0.2}_{-0.1})</td>
</tr>
<tr>
<td>(\mu^+\mu^-\mu^+\mu^-)</td>
<td>(9.9^{+1.7}{-1.5}) (stat.) (+0.3^{+0.3}{-0.3}) (syst.) (\pm 0.4) (lumi.)</td>
<td>(8.4^{+0.4}_{-0.3})</td>
</tr>
</tbody>
</table>

Good agreement between measurements and NLO predictions.
Table: \(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu} \) and \(WW \rightarrow \ell^+ \nu \ell^- \bar{\nu} \) Fiducial Cross Sections

<table>
<thead>
<tr>
<th>Channel</th>
<th>Measured Cross Section (fb)</th>
<th>Predicted (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu})</td>
<td>(12.2^{+3.0}_{-2.8}) (stat.) (\pm 1.9) (syst.) (\pm 0.5) (lumi.)</td>
<td>-</td>
</tr>
<tr>
<td>(e^+ \nu e^- \bar{\nu})</td>
<td>(56.4) (stat.) (\pm 9.8) (syst.) (\pm 2.2) (lumi.)</td>
<td>(54.6 \pm 3.7)</td>
</tr>
<tr>
<td>(\mu^+ \nu \mu^- \bar{\nu})</td>
<td>(73.9) (stat.) (\pm 6.9) (syst.) (\pm 2.9) (lumi.)</td>
<td>(58.9 \pm 4.0)</td>
</tr>
<tr>
<td>(e^+ \nu \mu^- \bar{\nu})</td>
<td>(262.3) (stat.) (\pm 12.3) (syst.) (\pm 20.7) (lumi.)</td>
<td>(231.4 \pm 15.7)</td>
</tr>
</tbody>
</table>

Good agreement between measurements and NLO predictions.
Unfolded differential distribution for $WW \rightarrow \ell^+\nu\ell^-\bar{\nu}$

Figure: Normalized differential WW fiducial cross section as a function of leading lepton p_T.

$\int L \, dt = 4.6 \text{ fb}^{-1}$
<table>
<thead>
<tr>
<th>Channel</th>
<th>Measured Cross Section (pb)</th>
<th>Predicted (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ $\rightarrow \ell^+\ell^-\ell'^+\ell'^-$</td>
<td>$7.2^{+1.1}{-0.9}$ (stat.)$^{+0.4}{-0.3}$ (syst.)±0.3 (lumi.)</td>
<td>$6.5^{+0.3}_{-0.2}$</td>
</tr>
<tr>
<td>ZZ $\rightarrow \ell^+\ell^-\nu\bar{\nu}$</td>
<td>$5.4^{+1.3}{-1.2}$ (stat.)$^{+1.4}{-1.0}$ (syst.)±0.2 (lumi.)</td>
<td>$6.5^{+0.3}_{-0.2}$</td>
</tr>
<tr>
<td>WW $\rightarrow \ell^+\nu\ell^-\bar{\nu}$</td>
<td>51.9 ± 2.0 (stat.)±3.9 (syst.)±2.0 (lumi.)</td>
<td>44.7 ± 2.8</td>
</tr>
<tr>
<td>8 TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ $\rightarrow \ell^+\ell^-\ell'^+\ell'^-$</td>
<td>$9.3^{+1.1}{-1.0}$ (stat.)$^{+0.4}{-0.3}$ (syst.)±0.3 (lumi.)</td>
<td>7.4 ± 0.4</td>
</tr>
</tbody>
</table>

- All measurements agree with NLO Standard Model predictions.
- $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$ used Monte Carlo with the zero-width approximation for 7 TeV, and moved to finite width at 8 TeV.
Figure: Total cross sections measured in the ZZ channel.
Presented ZZ and WW fiducial and total cross section measurements
- $ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$ at 7 and 8 TeV
- $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ and $WW \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ at 7 TeV

Good agreement between measurements and NLO Standard Model predictions

Full 7 TeV ZZ measurements with unfolded distributions and TGC limits coming soon...

Extend cross section measurements to include VBS WW and ZZ