QCD+EW corrections to DY in POWHEG

Luca Barzè University & INFN – Pavia

with G. Montagna, P. Nason, O. Nicrosini, F. Piccinini & A. Vicini

also on behalf of C. Bernaciack & D. Wackeroth

LHC EWWG meeting – October 09, 2012

QCD+EW corrections to DY in POWHEG

 $d\sigma = d\sigma_0 + d\sigma_{\alpha_s} + d\sigma_{\alpha} + d\sigma_{\alpha_s} + d\sigma_{\alpha_s} + \dots$ Fixed order MC:

- FEWZ: $\alpha_s^2(+\alpha \text{ for neutral DY})$
- SANC: $\alpha_s + \alpha$

Melnikov & Petriello, **PRL** 96 (2006) 231803 Li & Petriello, arXiv:1208.5967

Bardin & al., arXiv:1207.4400

Matching realized using different generators:

- MC@NLO ⊕ HORACE Balossini & al., JHEP 1001 (2010) 013

NLO matched to PS (POWHEG):

• W_EW-BMNNP

- L. B. & al., **JHEP** 1204 (2012) 037
- W_EW-BW Bernaciack & Wackeroth, PRD 85 (2012) 093003
 - Z in progress (preliminary results)

 $QCD{+}EW$ corrections to DY in <code>POWHEG</code>

General features of EW radiative corrections

- Unstable particles ($\Gamma \neq 0$) in the loops W · → avoid gauge invariance violation! \rightarrow Complex Mass (for DY simpler schemes)
- $m_{\gamma} = m_q = 0 \Rightarrow$ IR singularities (regularized):
 - **Soft** \rightarrow cancel between R and V
 - **IS collinear** \rightarrow redefinition of PDFs log
 - **FS collinear** $\rightarrow \log(Q^2/m_{\rho}^2)$ are physical:

General features of EW radiative corrections

- at $\sqrt{\hat{s}} \sim M_{W/Z}$ QED corrections important \rightarrow QED structure functions \rightarrow QED PS \rightarrow HORACE / PHOTOS Colonka & Was, EPJC45 (2006) 97 Carloni & al., JHEP 0612 (2006) 016 \rightarrow YFS \rightarrow WINHAC + SANC Jadach & Placzek, EPJC29 (2003) 325
- γ induced processes

 \rightarrow only MRSTQED2004 provides photon distribution function

$$\frac{\text{QCD/EW NLO Cross section}}{\text{d}\sigma_{NLO}} = \begin{cases} B(\Phi_n) + V^b(\Phi_n) \\ + \int \overbrace{R(\Phi_n, \Phi_{rad})}^{-\infty} \text{d}\Phi_{rad} \\ + \int \overbrace{R(\Phi_n, \Phi_{rad})}^{\infty} \text{d}\Phi_{rad} \\ + \int \underbrace{\frac{\text{d}z}{z}}_{z} G^{\oplus}(\Phi_{n,\oplus}) + \int \frac{\text{d}z}{z} G^{\ominus}(\Phi_{n,\ominus}) \\ = \boxed{B \, \text{d}\Phi_n} \\ V^b = V^b_{EW} + V^b_{QCD} \quad R = R_{EW} + R_{QCD} \quad G = G_{EW} + G_{QCD} \end{cases}$$

Virtual part (W_EW-BMNNP)

- V_{EW}^{b} calculated (cross-checked) in different ways
 - We chose to use:
 - Dittmaier & Krämer 2002 for *W* PRD65 073007
 - Dittmaier & Huber 2010 for Z/γ^* JHEP 1001 060
 - finite part of dimensional regularization of IR divergent scalar functions $(m_q^{in} = m_\gamma = 0, m_\ell \neq 0)$ Denner, Dittmaier NPB 844:199-242, 2011 Dittmaier NPB 565:69-122, 2000
 - factorizing out $\mathcal{N} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} (\frac{\mu_R^2}{Q^2})^{\epsilon}$

 \Rightarrow direct extension of subtraction procedure—

 C/G_{QCD} in POWHEG with FKS algorithm $\rightarrow C/G_{QED}$

NLO Checked with HORACE

Carloni & al., **JHEP** 10 (2007) 190 Carloni & al., **JHEP** 12 (2006) 016

QCD+EW corrections to DY in POWHEG

Virtual part II (W_EW-BW)

- V_{EW}^{b} taken from WGRAD2 Baur & Wackeroth, PRD 70, 073015, 2004
 - Mass regularization $(m_q \neq 0, m_\gamma \neq 0)$

• 2-cutoff (δ_c , δ_s) phase space slicing m_q , m_γ , δ_c , δ_s must cancel in physical result

$$d\sigma_{NLO}^{EW} = \left\{ B(\Phi_n) + \underbrace{(V+s)(\Phi_n)}_{\sim \delta_s} + \int_{\sigma_s, \delta_c} d\Phi_{rad} H\bar{C}(\Phi_n, \Phi_{rad}) \right\} d\Phi_n$$
$$\int_{1,2} \frac{dz}{z} \underbrace{HC(\Phi_n, z)}_{\sim \delta_c} + \int_{\delta_s, \delta_c} d\Phi_{rad} H\bar{C}(\Phi_n, \Phi_{rad}) \right\} d\Phi_n$$
Within POWHEG-BOX:
$$\bar{B} = B + V_{OCD} + V_{s,EW} + R_{OCD} + R_{EW} + G_{OCD} + G_{EW}$$

NLO Checks

	Tevatron, W^+	LHC, W ⁺	LHC, W ⁻
WGRAD2	362.55(2) pb	1059.6(1) pb	759.26(3) pb
W_EW-BW	362.4(2) pb	1059.0(5) pb	758.7(8) pb

(δ_s, δ_c)	Tevat, W^+	LHC, W ⁺	LHC, W ⁻
0.01, 0.005	362.4(2) pb	1059.0(5) pb	758.7(8) pb
0.01, 0.001	362.4(2) pb	1059.1(7) pb	759.2(5) pb
0.001, 0.0005	362.3(2) pb	1059.4(9) pb	759.4(5) pb
0.001, 0.0001	362.3(2) pb	1059.2(8) pb	759.3(5) pb

$QCD/EW NLO + PS in W_EW-BMNNP$

W⁺ Transverse Mass at LHC w_Ew-BMNNP

W⁺ Transverse Mass at LHC **W**_EW-BW

W transverse mass is an observable inclusive over QCD radiation $\Rightarrow O(\alpha \alpha_s)$ leading logs ~ cancel.

$\mu^+ \perp$ Momentum at LHC w_Ew-BMNNP

$\mu^+ \perp Momentum at LHC w_ew-bw$

 μ transverse momentum isn't an observable inclusive over QCD radiation $\Rightarrow O(\alpha \alpha_s)$ leading logs important.

W⁺ Total Cross Section at LHC w_Ew-BMNNP

QCD+EW corrections to DY in POWHEG

W⁺ Total Cross Section at LHC w_Ew-Bw

	σ _{lo} σ _{Nloew}	1024.0(1) pb 1059.0(5) pb			
	$\sigma_{QCD\otimes PS}$ $\sigma_{(QCD+EW)\otimes PS}$	PYTHIA 1014(3) pb 1052(3) pb	HERWIG 1027(3) pb 1066(3) pb		
$\frac{\sigma_{NLOEW} - \sigma_{LO}}{\sigma_{LO}} = \frac{\sigma_{(QCD + EW) \otimes PS} - \sigma_{QCD \otimes PS}}{\sigma_{QCD \otimes PS}} \sim 0.5\%$					
Same order of Balossini & al., JHEP 1001 (2010) 013					
Cuts & parameters different → Comparison needed.					

Z preliminary results W_EW-BMNNP

Z (very) preliminary results W_EW-BMNNP

Summary

POWHEG-BOX for CC DY with QCD & EW at NLO

- normalization with NLO QCD \oplus EW accuracy;
- matched mixed QCD \otimes QED PS;
- leading part of mixed $\mathcal{O}(\alpha \alpha_s)$ corrections \rightarrow important contribution for some observables;
- similar results from different approaches \rightarrow comparison ongoing.

Summary

POWHEG-BOX for CC DY with QCD & EW at NLO

- normalization with NLO QCD \oplus EW accuracy;
- matched mixed QCD \otimes QED PS;
- leading part of mixed $\mathcal{O}(\alpha \alpha_s)$ corrections \rightarrow important contribution for some observables;
- similar results from different approaches \rightarrow comparison ongoing.

W_EW-BMNNP: try to generate γ s as hardest particle \rightarrow consistent to use QED shower

W_EW-BW: do not try to generate γ s \rightarrow double counting if QED shower

• It is much more likely to generate g / q instead of γ_{--}

