WZ production at large transverse momenta beyond NLO in QCD

Sebastian Sapeta

IPPP, Durham, UK

in collaboration with Francisco Campanario

Working Group on Electroweak precision measurements at the LHC and PDF4LHC, CERN, October 8-10, 2012

$pp \rightarrow W^\pm Z + X \rightarrow \ell_1^\pm \nu_1^- \ell_2^+ \ell_2^- + X$
To compute approximate NNLO QCD correction to WZ we use:

VBFNLO + LoopSim

VBFNLO provides:
- WZ at NLO and WZj at NLO

LoopSim provides:
- consistent way to use the above results and supplement them with approximate 2-loop corrections
LoopSim summary

- use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

| input: event with n final state particles | LoopSim | output: all \(n - k \) final state particle events (equivalently all k-loop events) |

- notation: \(\bar{n}LO \) – simulated 1-loop
 \(\bar{n}NLO \) – simulated 2-loop and exact 1-loop

- this will work very well for the processes with large K factors e.g.

\[
\sigma_{\bar{n}NLO} = \sigma_{NNLO} \left(1 + \mathcal{O} \left(\frac{\alpha_s^2}{K_{NNLO}} \right) \right), \quad K_{NNLO} \gtrsim K_{NLO} \gg 1
\]

- LoopSim has one parameter \(R_{LS} \) (we shall vary it to probe uncertainties of the method related to nonsingular terms of the loop diagrams)
LoopSim has been shown to work

Drell-Yan at NNLO

- excellent agreement with DY at NNLO
- accounts very well for H_T distributions at Tevatron

Z+jets at Tevatron

- $p_T, \max \ [\text{GeV}]$
- K factor wrt NLO
- $p_T, 14 \text{ TeV}, m_Z/2 < \mu < 2m_Z$
- $66 < m_{e^+e^-} < 116 \text{ GeV}$

- $Z/\gamma^*(\rightarrow l\ell) + \geq 1 \text{ jet}$
- $l = e, \mu; |\eta| < 1.0; p_T^l > 25 \text{ GeV/c}^2$
- $p_T^{\text{jet}} \geq 30 \text{ GeV/c}, |Y^{\text{jet}}| \leq 2.1$

- $\mu = \frac{1}{2} R_T = \frac{1}{2} (\Sigma p_T^l + P_T^l + P_T)$

Sebastian Sapeta (IPPP, Durham)

WZ production at large transverse momenta beyond NLO in QCD
WZ at \bar{n}NLO: details of the computation

All results correspond to:

- both W^+Z and W^-Z production channels
- two unlike-flavour decay channels: $ee\mu\nu_\mu$ and $\mu\mu e\nu_e$
- MSTW NNLO 2008 at all orders
- $\mu_{F,R} = \frac{1}{2} \left\{ \sum p_{T,\text{partons}} + \sqrt{p_{T,W}^2 + m_W^2} + \sqrt{p_{T,Z}^2 + m_Z^2} \right\}$

Cuts:

- $|y_\ell| \leq 2.5$, $p_{T,\ell} \geq 15$ (20), for ℓ coming from Z (W)
- $E_{T,\text{miss}} > 30$ GeV
- $60 < m_{\ell^+\ell^-} < 120$ GeV
- jets from anti-k_t, $R = 0.45$,
- for observables involving jets: $|y_{\text{jet}}| \leq 4.5$, $p_{T,\text{jet}} \geq 30$ GeV
- $\Delta R_{\ell,j} > 0.3$, $\Delta R = \sqrt{\Delta\phi^2 + \Delta y^2}$
H_T distribution

$H_T = \sum p_{T,jets} + \sum p_{T,\ell} + E_{T,miss}$

- huge K-factor from LO to NLO, distribution very sensitive to new channels and new topologies
- very good agreement between \bar{n}LO and NLO at large H_T
- \bar{n}NLO corrections as large as 100% w.r.t. NLO
- small R_{LS} uncertainties at large H_T
- marginal reduction of scale uncertainties at \bar{n}NLO (new topologies which dominate computed only at LO)
p_t of the hardest lepton

- \bar{n}NLO corrections beyond NLO scale uncertainties for $p_t > 200$ GeV
- \bar{n}NLO with $p_{t,veto} = 50$ GeV: large corrections, larger scale uncertainties

Sebastian Sapeta (IPPP, Durham)

WZ production at large transverse momenta beyond NLO in QCD
missing E_T distribution

- again, huge K-factor from LO to NLO
- large \bar{n}NLO of the order of 30%
- \bar{n}NLO correction exceeds NLO scale uncertainty
- reduced scale uncertainty at \bar{n}NLO

W$^\pm$Z, pp, 8 TeV
a-kt, $R=0.45$, MSTW NNLO 2008
60 $<m_Z <$ 120 GeV, $\Delta R_{l(l,j)} = 0.3$
transverse mass of the WZ system

\[m_{T,WZ}^2 = (E_T^W + E_T^Z)^2 - (p_T^W + p_T^Z)^2 - (p_T^W + p_T^Z)^2 \]

▷ example of an observable for which \(\bar{n}\)NLO corrections are small

▷ finite loop terms of large importance (hence larger \(R_{LS} \) uncertainty)

▷ favoured configurations with \(W \) and \(Z \) back-to-back and both with sizable \(p_t \); those do not have logarithmic enhancements
We used LoopSim + VBFNLO to compute approximate NNLO QCD corrections to the process $pp \rightarrow WZ \rightarrow \ell_1^\pm \nu_1 \ell_2^\pm \ell_2^- + X$.

We found that these corrections are sizable for a number of observables at high p_t, that is: H_T, $p_{T, \ell, \text{max}}$ and $E_{T, \text{miss}}$.

It is therefore important to take them into account in physics analyses within and beyond the Standard Model.
BACKUP SLIDES
The LoopSim method: \bar{n}LO, $\bar{n}\bar{n}$LO etc.

\begin{itemize}
 \item jet clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$
 \item weight of an event $\sim (-1)^{\text{nb. of loops}}$ and all weights sum up to zero (unitarity)
 \item beware: the loops above are just a shortcut notation!
\end{itemize}
Including exact loops

\(E_{n,l} \) – input event with \(n \) final state particles and \(l \) loops
\(U^b_l \) – operator producing event with \(b \) Born particles and \(l \) loops
\(U^b_\forall \) – operator generating all necessary loop diagrams at given order

How to introduce exact loop contributions?

\[
U^b_\forall(E_{n,0}) + U^b_\forall(E_{n-1,1}) - U^b_\forall(U^b_1(E_{n,0}))
\]

- generate all diagrams from the tree level event
- generate all diagrams from the 1-loop event
- remove all approximate diagrams from \(U^b_\forall(E_{n,0}) \) that have exact counterparts provided by \(U^b_\forall(E_{n-1,1}) \)

- inclusion of exact loops helps reducing scale uncertainties
- straightforward generalization to arbitrary number of exact loops