Predictions for Drell-Yan ϕ^* and Q_T observables at the LHC

Andrea Banfi
University of Freiburg
with
S. Marzani, M. Dasgupta and L. Tomlinson
Available resummations of large logarithms $\ln(Q_T/M_Z)$ in the Z-boson Q_T distribution follow two distinct philosophies:

- **Catani et al:** very accurate (NNLL+NNLO) resummation and no non-perturbative (NP) effects [Catani et al’10]

- **RESBOS:** less accurate (NLL +NLO) resummation and intrinsic parton k_t modelled with a NP form factor
Small-x broadening

- RESBOS NP form factor predicts a significant broadening of the Z-boson Q_T spectrum at the LHC due to small-x effects

[Berge Nadolsky Olness Yuan ’04]

- The understanding of this small-x broadening needs a dedicated study with precision observables probing the low-Q_T domain
New precision observables in DY

In recent years new observables have been introduced that probe low p_T physics, but have better resolution than Z transverse momentum \vec{Q}_T

$$\vec{a}_T = \vec{Q}_T \times \frac{\vec{p}_{T1} - \vec{p}_{T2}}{|\vec{p}_{T1} - \vec{p}_{T2}|}$$

$$\phi^* = \tan(\phi_{acop}/2) \sin \theta^* \simeq \frac{a_T}{M_Z}$$

- a_T performs much better than Q_T in the low Q_T region
- Observables like ϕ^* or $\tan(\phi_{acop}/2)$ are determined only by lepton directions and can be measured very precisely

[Vesterinen Wyatt '09, AB Redford Vesterinen Waller Wyatt '10]
Comparison of ϕ^* distribution for large Z rapidity ($|y| > 2$) with RESBOS raised issues with small-x broadening

However, agreement between Tevatron data and RESBOS seems to be restored in the new version of RESBOS

We have decided to perform a dedicated theoretical study of the ϕ^* distribution using theoretical tools from perturbative QCD only, to see to what extent one really needs NP effects
At small ϕ^* the perturbative series does not converge because of the appearance of large logarithms up to $\alpha_s^n [\ln^{2n-1} \phi^*/\phi^*] +$

$$\frac{1}{\sigma} \frac{d\sigma}{dM^2 d\phi^*} = \alpha_s \left[\frac{\ln(1/\phi^*)}{\phi^*} \right] + \ldots$$

These logarithms can be resummed at all orders

$$\frac{d\sigma}{dM^2 d\phi^*} = \int_0^{\infty} dbM \cos(bM \phi^*) \mathcal{L}(\vec{b}^{-1}) e^{-R(\vec{b}M)} \quad \vec{b} = \frac{b e^{\gamma_E}}{2}$$

$R(\vec{b}M)$ is the same Sudakov exponent as for boson Q_T

$\mathcal{L}(1/\vec{b})$ is a process-dependent term, containing the parton luminosities at the scale $1/\vec{b}$
Our predictions are NNLL accurate, i.e. $\alpha_s^n \ln^{n-1}(\bar{b}M)$, and their ingredients $R(\bar{b}M)$ and $\mathcal{L}(1/\bar{b})$ are all known from Q_T resummation [AB Marzani Dasgupta ’11]

$$\frac{d\sigma}{dM^2 d\phi^*} = \int_0^{\infty} db M \cos(b M \phi^*) \mathcal{L}(b^{-1}) e^{-R(\bar{b}M)} \quad \bar{b} = \frac{b e^{\gamma_E}}{2}$$

The “parton luminosity” $\mathcal{L}(1/\bar{b})$ contains all process-dependent terms

$$\mathcal{L}(\bar{b}^{-1}) = \int_{\text{lepton cuts}} [dk_1][dk_2] \int_0^1 dx_1 dx_2 \delta(x_1 x_2 s - M^2) \sum_{i,j} \left\{ f_i(x_1, b^{-1}) f_j(x_2, b^{-1}) + \frac{\alpha_s(\bar{b}^{-1})}{2\pi} \left[\sum_k \int_0^1 \frac{dz}{z} C_{ik}(z) f_k \left(\frac{x_1}{z}, b^{-1} \right) f_j(x_2, b^{-1}) \right] \right\} M^2(x_1 p_1, x_2 p_2, k_1, k_2)$$

The Born matrix element $M^2(x_1 p_1, x_2 p_2, k_1, k_2)$ for hadronic dilepton production is taken directly from MCFM: we are then fully differential in the lepton momenta by construction

All convolutions are perform directly in x space (i.e. no Mellin transform) using the HOPPET package by Salam and Rojo
We integrate numerically over the impact parameter \(b \): this requires prescriptions both at large and at small \(b \)

\[
\frac{d\sigma}{dM^2 d\phi^*} = \int_0^\infty dbM \cos(bM\phi^*) \mathcal{L}(\bar{b}^{-1}) e^{-R(\bar{b}M)}
\]

Large \(b \): avoid Landau pole in \(R(\bar{b}M) \) as well as factorisation scale \(1/\bar{b} \) become less than \(Q_0 \lesssim 1 \text{GeV} \) ⇒ sharp cutoff \(b_{\text{max}} \geq 1/Q_0 \) and freeze the pdfs for \(b \geq 1/Q_0 \)

Small \(b \): freeze \(R(\bar{b}M) \) and \(\mathcal{L}(\bar{b}^{-1}) \) at their value for \(\bar{b}M \leq 1 \) ⇒ the \(\phi^* \) distribution is normalised to the total cross section

A PT resummation with such prescriptions to perform the \(b \) integral is what we mean by PT prediction

By NP effects we mean either a gaussian smearing \(\exp[-g_{\text{NP}}b^2] \) or even introducing \(k_t \) dependent parton densities
Perturbative uncertainties

- We vary renormalisation, factorisation and resummation scales μ_R, μ_F and μ_Q in the range $[M/2, 2M]$ with $1/2 \leq \mu_i/\mu_j \leq 2$

\[\frac{d\sigma}{dM^2d\phi^*} = \int_0^\infty dbM \cos(bM\phi^*) \left[C \left(\frac{\mu_F}{\mu_Q} \right) \otimes \mathcal{L} \left(\alpha_s(\mu_R), \frac{\mu_R}{M}, \frac{\mu_F}{b\mu_Q} \right) \right] e^{-R[\alpha_s(\mu_R), \frac{\mu_R}{M}, \frac{\mu_Q}{M}, \delta\mu_Q]} \]

- We match our results to Z+1jet@NLO, obtained with MCFM

\[\left(\frac{d\sigma}{d\phi^*} \right)_{\text{matched}} = \left(\frac{d\sigma}{d\phi^*} \right)_{\text{resummed}} + \left(\frac{d\sigma}{d\phi^*} \right)_{\text{fixed order}} - \left(\frac{d\sigma}{d\phi^*} \right)_{\text{expanded}} \]

- We compute $1/\sigma d\sigma/d\phi^*$ by dividing $d\sigma/d\phi^*$ by its area: dividing by the NLO total cross section gives 1% difference

- We validate our predictions by comparing $1/\sigma d\sigma/d\phi^*$ to Tevatron data for electrons and muons, in different bins of Z-boson rapidity

[AB Marzani Tomlison Dasgupta '11]
Phistar at the Tevatron

- Going from NLL to NNLL resummation reduces the theoretical uncertainty from 10% to 5-6%

- Different prescriptions to evaluate the b integral (e.g. changing the freezing point of the pdfs Q_0 by a factor of two) give curves within our uncertainty band
Validation against Tevatron data (I)

- $Z \rightarrow \mu^+ \mu^-$ with two different bins in Z-boson rapidity

Good agreement with Tevatron data even at very low values of ϕ^* without any NP effects
Validation against Tevatron data (II)

- $Z \rightarrow e^+e^-$ with three different bins in Z rapidity

![Graphs showing comparison between data and theory for different rapidity bins.]

- Agreement of our predictions with data persists even in the small-x region $|y| > 2$ ⇒ No need for small-x broadening

- Slight disagreement in the large ϕ^* region where multi-jet configurations become important ⇒ case for $Z+1\text{jet@NNLO}$
Impact of non-perturbative effects

- We take the curve with $\mu_R = \mu_F = \mu_Q = M_Z$ and add to the resummation a gaussian smearing $\exp[-g_{NP}b^2]$

- Inclusion of NP corrections gives an effect that is comparable to the variation of perturbative scales $\Rightarrow N^3LL$ resummation needed?
Issues with Qt resummation at LHC

- Our resummation can be applied to the Q_T distribution \(\Rightarrow\) validation of our predictions against LHC data!

\[
\frac{d\sigma}{dM^2 dQ_T} = Q_T \int_0^\infty db \, b J_0(bQ_T) \mathcal{L}(1/\bar{b}) e^{-R(\bar{b}M)}
\]

- Freezing of the pdfs below $Q_0 = 1\text{GeV}$ leads to an unphysical oscillatory behaviour at large $Q_T \Rightarrow$ extrapolate the pdfs for $b \geq 1/Q_0$

- All curves with $\mu_F/\mu_Q = 1/2$ are very sensitive to variation of Q_0 by a factor 2 around $1\text{GeV} \Rightarrow$ sensitivity to Physics beyond collinear factorisation?

- We have decided therefore to evaluate our perturbative uncertainties by varying all scales in the range $\mu_F/\mu_Q \geq 1$ only
Predictions for Q_T at the LHC

We can provide predictions for the Q_T distribution with the fiducial cuts employed by ATLAS and CMS.

Also at the LHC data lie within our PT uncertainty band.

The inclusion of a NP term $\exp[-0.5 GeV^2 b^2]$ gives a distribution compatible with our theoretical uncertainty.
Having validated our resummation with the Q_T distribution, we can confidently provide predictions for ϕ^* at the LHC.
Conclusions and open issues

- The novel observable ϕ^* can be measured very precisely and provides an accurate probe of Q_T physics over a wide range of scales.

- We have a code that can produce perturbative resummed predictions for ϕ^* and Q_T distributions in the Drell-Yan process with arbitrary cuts on lepton momenta.

- Our code is easily generalisable to other \bar{Q}_T-type resummations in other processes (e.g. $\vec{p}_{T,t\bar{t}}$ in top production), since it is just a reweighting of MCFM.

- Tevatron data call for more precise theoretical predictions both at low (N^3LL resummation) and at high ϕ^* ($Z+1\text{jet@NNLO}$).

- Our theoretical predictions at the LHC are sensitive to behaviour of pdfs below 1GeV: this calls for a better theoretical understanding of the breaking of collinear factorisation (need for k_t dependent pdfs?) ⇒ comparisons with other resummation codes would be valuable.