QCD+EW corrections in FEWZ

Frank Petriello

w/ Ye Li, 1208.5967

Working group on EW precision measurements at the LHC October 9, 2012

Outline

- Brief motivation
- What is in the new FEWZ 3
- Details of input choices
- Results
- Conclusions and postscript

Motivation

 Motivation for this work is the impressive experimental results shown below

 Approaching (or at) percent-level errors in numerous measurements, with impact on precision determination of PDFs, electroweak parameters, and deviations from the SM

EW corrections

•Starting also to probe kinematic regions off the Z-peak, where electroweak corrections must be included

•Numbers for 14 TeV LHC:

Sudakov corrections: $\delta_{Sud} \approx -(3-6)\%$

 $\gamma\gamma\rightarrow$ II: $\delta_{\gamma\gamma}\approx+5\%$

QED: $\delta_{\text{QED}} \approx -(3-4)\%$

EW corrections

•Starting also to probe kinematic regions off the Z-peak, where electroweak corrections must be included

Goals

- Very modest goal, motivated by experimental request: include the higher-order QCD and EW corrections in a single code
- FEWZ 3: NNLO QCD+NLO EW in the additive approximation; no control over mixed $O(\alpha \alpha_s)$
- NLO EW using complex-mass scheme
- Intended usage is for reasonably-inclusive distributions; don't look at bins very near Jacobian peaks, p_{T,Z}=0

New features in FEWZ 3

- NNLO QCD+NLO EW with additive combination
- Photon-induced contributions at LO
- Support for G_μ and α(M_Z) schemes (also manual input, but then only QED corrections used)
- Logarithmically-enhanced fermion-mass terms included
- Ability to turn on/off QED FSR/ISR, weak contributions
- Supports dynamical scale choice

Input file

```
Alpha QED (0) is for photon-induced channels (which use photon
PDFs); set to zero to turn off these channels
                              = 0.007297352568d0 used for yy in, only in PDF set has this option
                                                         used for \gamma\gamma \rightarrow II, only if the
'Alpha QED (0)
                             = '0.007756146746d0
'Alpha QED (Mz)
'Fermi constant (I/Gev^2)
                                  = ' I.16637d-5
Only QED corrections is on if the input scheme is manual
Input scheme: 0. Manual input, I. Gmu scheme; 2. AlphaMz scheme
'Which input scheme:
                                              Our default choice
```

Input file

PHOTON RECOMBINATION-----

'DeltaR sep. for photon recomb. = 0.1d0

'Minimum pT for observable photon = ' 10d0

'Maximum eta for observable photon = '2.5d0

Combine photon fourmomentum with lepton i within this radius in η - Φ plane

PHOTON CUTS-

'Minimum Number of Photon

'Maximum Number of Photon

'Lep-Photon deltaR minimum

= ' 0.040

Can study either inclusive or exclusive photon multiplicities

Benchmarking

• Detailed study of NLO EW corrections by Dittmaier, Huber 0911.2329

$$p_{T,l^{\pm}} > 25 \text{ GeV}, |\eta_{l^{\pm}}| < 2.5.$$

$M_{ll}/{ m GeV}$	> 50	> 100	> 200	> 500	> 1000	> 2000
LO(DH)/pb	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\mathrm{LO_0/pb}$	738.789(9)	32.723(4)	1.483(1)	0.0809449(8)	0.0067993(6)	0.0003038(1)
LO_{μ}/pb	738.769(9)	32.728(4)	1.483(1)	0.0809451(8)	0.0067993(6)	0.0003037(1)
$\delta^{\gamma\gamma,LO}(\mathrm{DH})/\%$	0.17	1.15	4.30	4.92	5.21	6.17
$\delta^{\gamma\gamma,LO}/\%$	0.17	1.15	4.30	4.92	5.21	6.18
$\delta^{QED,rec}(\mathrm{DH})/\%$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta_0^{QED,rec}/\%$	-1.79	-4.80	-2.94	-3.41	-4.33	-5.81
$\delta_{\mu}^{QED,rec}/\%$	-1.77	-4.78	-2.93	-3.41	-4.33	-5.83
$\delta_{\mu}^{QED}(\mathrm{DH})/\%$	-3.34	-8.85	-5.72	-7.05	-9.02	-12.08
$\delta_{\mu}^{QED}/\%$	-3.38	-9.09	-5.85	-7.22	-9.28	-12.47
$\delta^{weak}(\mathrm{DH})/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta^{weak}/\%$	-0.70	-1.02	-0.14	-2.38	-5.87	-11.11

DH account for the mixing of quark and photon PDFs from collinear singularities; we have not (yet) included this

Distributions

•Some results from NNLO QCD+NLO EW combination: obtained with MSTW2008 NNLO PDFs; hatched regions show 68%CL PDF-only error

Distributions

•Some results for photon kinematics below the Z-peak (please note, LO only in such observables)

Shoulder corresponds to maximum p_T for FSR photons from on-shell Z production recoiling against hard lepton

Corresponds to maximal $\Delta\Phi_{ly}$ for on-shell Z production

Benchmark study numbers

Conclusions

- Have presented a new version of FEWZ that has NLO EW corrections combined with NNLO QCD in the additive approximation
- EW corrections in the complex-mass-scheme; good agreement with previous literature
- Have shown representative results, including some numbers for the benchmark study
- As always, look forward to feedback from experimental colleagues

PS:

•The following plots were shown at ICHEP:

•We contacted CMS to find out details about this study and was told that updated calculations would appear (our initial testing in the 30-45 GeV bin revealed no sign of a NLO/NNLO discrepancy, or need for resummation). Nothing yet... is there an update?