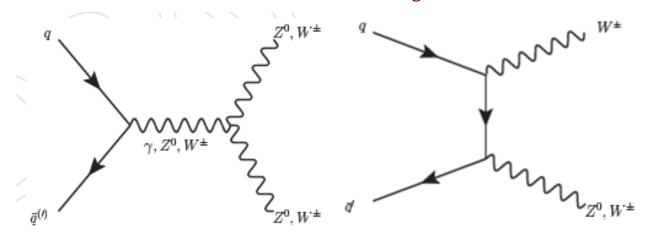
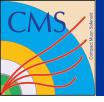
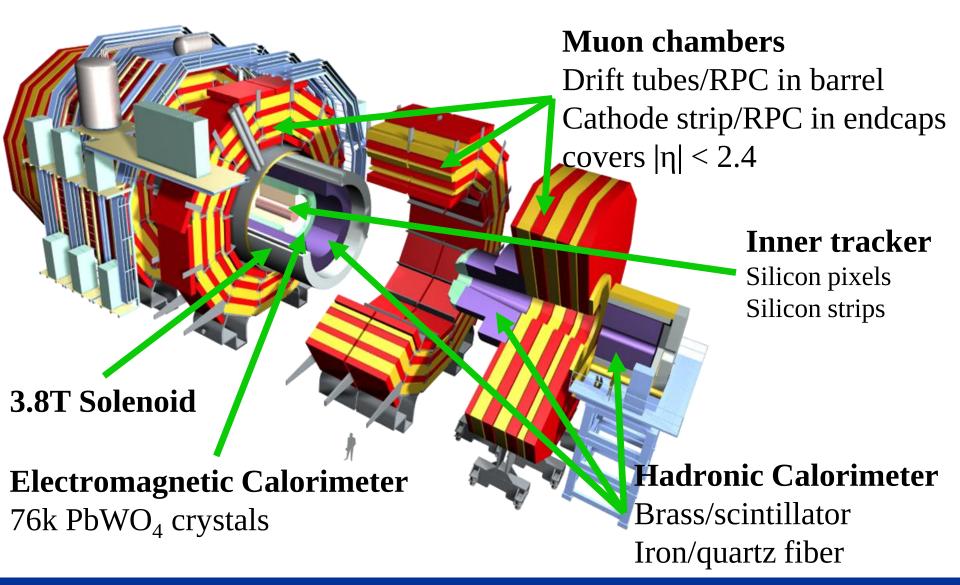

Semi-leptonic VW production at CMS

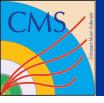
Jake Anderson, on behalf of CMS
Fermilab



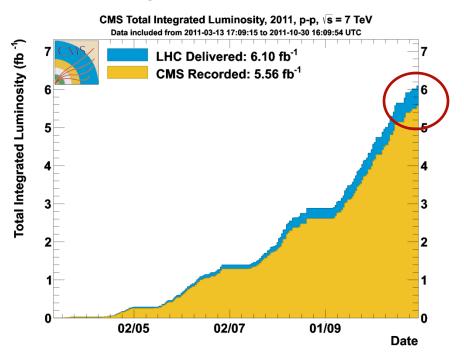

LHC WV production

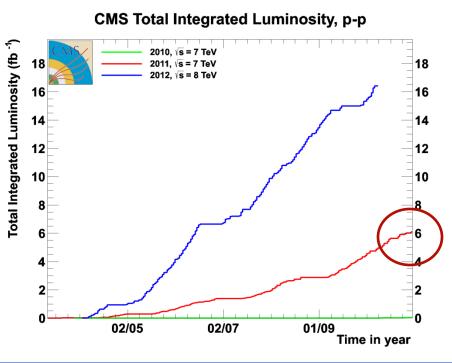
• WV production (leading order α_s)

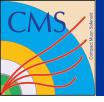



- s- and t-channel diagrams diverge, but the sum is finite.
- **♣** NLO contributions are large, >~ 50% of LO.
 - includes vector boson fusion, gluon fusion, etc.
- Searching in semi-leptonic final state maintains a large branching fraction at the cost of large background.

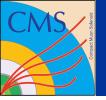
The CMS detector



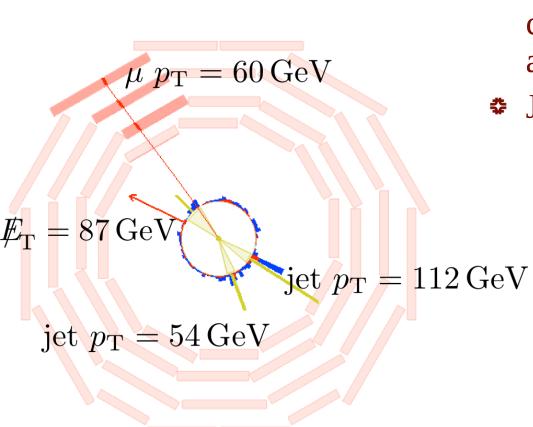



LHC dataset

- CMS has been efficiently collecting data for ~3 years.
- **♣** The current WV results are based on the full dataset collected at $\sqrt{s} = 7$ TeV of 5 fb⁻¹.
- ♣ Already CMS has recorded more than 15 fb⁻¹ at 8 TeV.

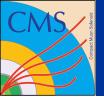


Selecting events (leptons)


- Our data was collected primarily using single lepton (e or μ) triggers.
 - \circ p_T > 24 GeV (muons) or p_T > 25-32 GeV (electrons)
- Lepton must originate at primary vertex
- Veto events with a second, looser lepton
- Muon selection
 - $p_T > 25 \text{ GeV}$
 - $|\eta| < 2.1$
 - relative isolation in a cone $(\Delta R < 0.3) < 10\%$
 - \circ ME_T > 25 GeV
 - \circ W m_T > 30 GeV

- Electron selection
 - \circ p_T > 35 GeV
 - $|\eta|$ < 2.5 (excluding barrel endcap transition)
 - relative isolation < 5%
 - \circ ME_T > 30 GeV
 - \circ W m_T > 50 GeV

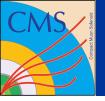
Selecting events (jets)



♣ Particle flow based jets clustered using anti-k_T algorithm with R = 0.5.

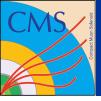
Jet criteria

- $p_T > 35 \text{ GeV}$
- $|\eta| < 2.6$
- $|\Delta \varphi(\text{jet 1, ME}_{\text{T}})| > 0.4$
- p_T (jet 3) \leq 30 GeV
- Veto jets within $\Delta R < 0.3$ of lepton.
- ∘ $|\Delta \eta \text{ (jet 1, jet 2)}| < 1.5$
- \circ p_T (dijet system) > 20 GeV
- veto b-tagged jets using secondary vertex tagging.

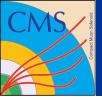


Determining yields

- We determine the signal and background yields in a maximum likelihood fit to m_{jj} spectrum from 40-150 GeV.
- We constrain the normalization of the backgrounds during the fit using a Gaussian constraint.


component	template source	normalization constraint
diboson (WV)	MC	unconstrained
W+jets	MC	31.3 nb ± 5% (NLO) [FEWZ]
top pairs	MC	165 pb ± 7% (NNLL) [Kidonakis]
single top	MC	85 pb ± 5% (NNLL) [Kidonakis]
Drell-Yan + jets	MC	3.05 nb ± 4.3% (NNLO) [FEWZ]
multijet (QCD)	data	from data via ME _T fit

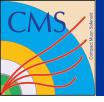
Signal MC samples


- We use PYTHIA6, Z2 underlying event tune, to generate inclusive WW and WZ samples.
 - Using these samples we evaluate the acceptance and efficiency used to go from an event yield to a cross section.
 - In this we also assume that the ratio of WW/WZ cross sections is as predicted by MCFM at NLO in the standard model.
 - The acceptance is also corrected for the boson branching fractions.
- **♣** This sample is also used to create the signal templates used in the yield extraction fit.

QCD multijet determination

- ❖ We determine the contribution of the multijet QCD background from events which fail lepton isolation with a looser ME_T cut, giving us a rich QCD sample.
- ♣ From this sample, we derive the templates for the QCD multijet contribution to the m_{ii} spectrum
- ❖ We fit the ME_T spectrum to separate QCD from events with real neutrinos and to determine the normalization and constraint for the multijet component of the spectrum.

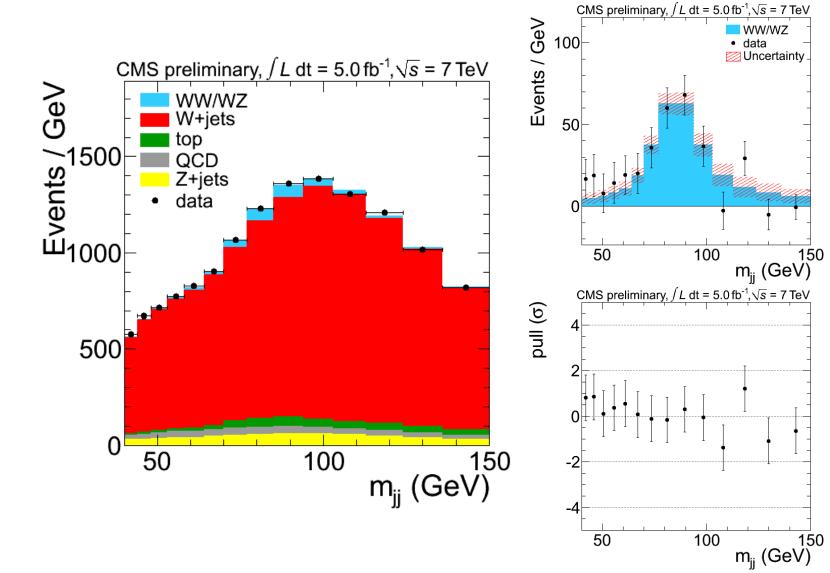
W+jets background

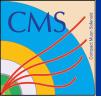

♣ Using a MADGRAPH for W+jets, there is an inherent uncertainty in the factorization-renormalization scale q_0 and the ME/PS matching scale μ_0 .

$$q_0^2 = m_W^2 + p_{T,W}^2$$
 and $\mu_0 = 20 \,\text{GeV}$

• We have samples with $2q_0$, $q_0/2$, $2\mu_0$ and $\mu_0/2$ and create a combination

$$\mathcal{F}_{W+\text{jets}} = \alpha \mathcal{F}_{W+\text{jets}}(\mu_0, q') + \beta \mathcal{F}_{W+\text{jets}}(\mu', q_0) + (1 - \alpha - \beta) \mathcal{F}_{W+\text{jets}}(\mu_0, q_0)$$


- The fit to the data determines the α and β parameters and whether $2q_0$ ($2\mu_0$) or $q_0/2$ ($\mu_0/2$) is used.
- **♣** The uncertainty in these determinations is folded into the uncertainty on the diboson yield.



Fit results (I)

150

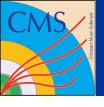
Fit results (II)

Process	Muon channel	Electron channel
Diboson (WW+WZ)	1899 ± 373	783 ± 306
W+jets	67384 ± 586	31644 ± 850
tī	1662 ± 117	946 ± 67
Single top	650 ± 33	308 ± 17
Drell-Yan+jets	3609 ± 155	1408 ± 64
Multijet (QCD)	296 ± 317	4195 ± 867
Fit χ^2/dof (probability)	9.73/12 (0.64)	5.30/12 (0.95)
Total from fit	75420	39371
Data	75419	39365
Acceptance \times efficiency ($\mathcal{A}\varepsilon$)	5.153×10^{-3}	2.633×10^{-3}
Expected WW+WZ yield from simulation	1697 ± 57	867 ± 29

This translates into a WV cross section

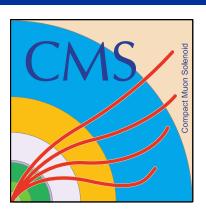
- $\sigma = 68.89 \pm 8.71(stat) \pm 9.70(syst) \pm 1.52(lumi) pb$
- profiled likelihood ratio significance 4.3σ.

Compared to MCFM cross section of


•
$$\sigma_{NLO} = 65.6 \pm 2.2 \text{ pb}$$

Systematic uncertainties

- ❖ We evaluate the uncertainty of the trigger and lepton selection efficiencies using data. (1-2%)
 - MC was corrected to achieve efficiency agreement.
- We use MCFM with various PDF sets to evaluate the uncertainty on the acceptance (3%).
- Jet veto uncertainty for 3rd jet (2%).
- ME_T modeling differences between data and simulation (0.5%).
- We evaluate systematic efficiency uncertainties due to the btag veto to be negligible.
- Using a pure top pair sample, we look at jet energy uncertainties and find them to be negligible also.
- **♣** The luminosity uncertainty is 2.2%.

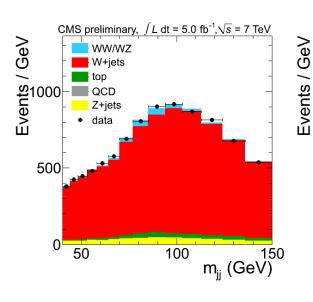


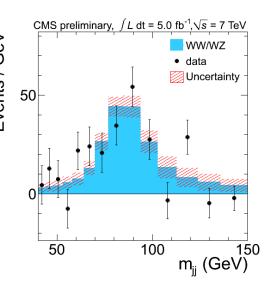
Conclusion

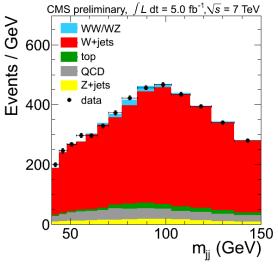
- CMS has measured the WW+WZ cross-section in semi-leptonic decays.
- We have been able to model and control the backgrounds and achieve a signal significance of 4.3σ in the combination of both lepton flavors.
- **♣** The result is consistent with the predictions of MCFM for the combined cross-section.
- This is the first step by CMS to look at this diboson final state and can be used to search for anomalous gauge couplings.

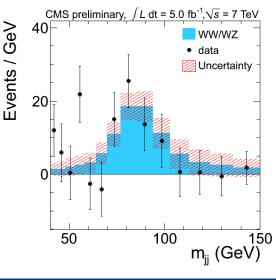
backup

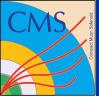
By lepton flavor

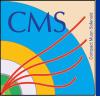



muons:


$$\sigma = 73.4 \pm 15.1 \text{ pb}$$


electrons:


$$\sigma = 60.1 \pm 21.5 \text{ pb}$$



Acceptance systematic

Source of uncertainty	Relative variation in acceptance value
PDF: CT10	1.4%
PDF: CTEQ61M	-0.7%
PDF: MSTW8NL	0.4%
PDF: MSTW8NN	0.1%
PDF: MSTW8LO	-1.3%
Scale: 2 μ_0	-0.01%
Scale: $0.5 \mu_0$	0.8%
Scale: $\sqrt{M_W^2 + p_{T,jet1}^2}$	-0.3%
Scale: H_T	0.1%

Jet veto systematic

We use uncertainty based on comparing generator level veto efficiency for various samples and generators.

sample	efficiency
PYTHIA WW	88.72%
PYTHIA WZ	87.48%
MADGRAPH	89.57%