

Enabling Grids for E-sciencE

Grid Computing: Running your Jobs around the World

LABORATÓRIO DE INSTRUMENTAÇÃO EM FÍSICA EXPERIMENTAL DE PARTÍCULAS

- GRID computing is a recent concept which takes distributing computing a step forward
- The name GRID is chosen by analogy with the electric power grid:
 - Transparent: plug-in to obtain computing power without worrying where it comes from
 - Permanent and available everywhere
- The World Wide Web provides seamless access to information that is stored in many millions of different geographical locations
- In contrast, the GRID is a new computing infrastructure which provides seamless access to computing power and data storage distributed all over the globe

Motivation

Single institutions are no longer able to support the computing power and storage capacity needed for modern scientific research

Compute intensive sciences which are presently driving the GRID

development:

 Physics/Astronomy: data from different kinds of research instruments

- Medical/Healthcare: imaging, diagnosis and treatment
- Bioinformatics: study of the human genome and proteome to understand genetic diseases
- Nanotechnology: design of new materials from the molecular scale
- Engineering: design optimization, simulation, failure analysis and remote Instrument access and control
- Natural Resources and the Environment: weather forecasting, earth observation, modeling and prediction of complex systems: river floods and earthquake simulation

The GRID Metaphor

- The transparent interaction between heterogeneous resources (owned by geographically spread organizations), applications and users is only possible through...
 - the use of a specialized layer of software called middleware

- The middleware hides the infrastructure technical details and allows a secure integration/sharing of resources.
 - Internet protocols do not provide security mechanisms for resource sharing.

GRID vs Distributed Computing

■ Distributed infrastructures already exist, but...

- they normally tend to be local & specialized systems:
 - Intended for a single purpose or user group
 - Restricted to a limit number of users
 - Do not allow coherent interactions with resources from other institutions

■ The GRID goes further and takes into account:

- O Different kinds of resources:
 - Not always the same hardware, data, applications and admin. policies
- O Different kinds of interactions:
 - User groups or applications want to interact with Grids in different ways
- Access computing power / storage capacity across different administrative domains by an *unlimited* set of non-local users
- O Dynamic nature:
 - Resources added/removed/changed frequently
- World wide dimension

The LCG/EGEE Projects

- Among the several projects in place, LIP is involved in:
 - LHC Computing GRID (LCG)
 - The biggest worldwide GRID infrastructure
 - Will be used in the data analysis produced by the LHC accelerator built at CERN, the european organization for nuclear research
 - Enabling GRIDS for E-Science in Europe (EGEE)
 - An European GRID project
 - The biggest worlwide GRID built for <u>multi-disciplinary sciences</u>

Enabling Grids for E-sciencE

Grid Resources

- Grid services are divided in two different sets:
 - Local services: deployed and maintained by each participating site
 - Computing Element (CE)
 - Storage Element (SE)
 - Monitoring Box (MonBox)
 - User Interface (UI)
 - Core services: central services installed only in some Resource Centres (RC's) but used by all users to allow interaction with the global infrastructure
 - Resource Broker (RB)
 - Top-Berkeley-Database Information Index (BDII)
 - File Catalogues (FC)
 - Virtual Organization Membership Service (VOMS)
 - MyProxy server (PX server).

A GRID Site: The Computing Element

Enabling Grids for E-sciencE

Computing Element (CE) is one of the key elements of the site.

Gatekeeper service (GK)

- Authentication and authorization;
- Interacts with the local batch system (PBS, LSF, Condor, SGE);
- Runs a local information system (GRIS) publishing information regarding local resources.

• Worker Nodes (WN)

Where jobs are really executed.

A GRID Site: The Storage Element

Enabling Grids for E-sciencE

- The Storage Element (SE) is the other key service.
 - SRM Storage Resource Management (DPM, dCache and CASTOR)
 - Provides an interface for the grid user to access the local storage system (disk pools, HSM with tape backend, etc...);
 - Implements gridFTP, an extension of the ftp protocol adding GSI security.

GFAL API protocol

 Used on top of the SRM to provide POSIX-like access, enabling open/read/write operations in files currently stored in a site SE.

A GRID Site: The MONBOX & UI

Enabling Grids for E-sciencE

- ■The Monitoring Box (MonBox) service
 - Collects information given by sensors installed in the site machines.
- **■User Interfaces (UI)**
 - Contain client middleware tools allowing the user to perform a large set of operations with grid resources (submission of jobs and storage and management of files).

A job submission example

Job Status: Submitted

submitted

Enabling Grids for E-sciencE

Information Service (IS)

Resource Broker (RB)

Logging & Book-keeping (LB)

Storage Element (SE)

Computing Element (CE)

Job Status: Waiting

GGGG **Job Status: Ready Enabling Grids for E-sciencE** submitted Replica Catalogues (RC) **Information** Service (IS) waiting ready Resource Broker (RB) Job Submission **Storage** Service (JSS) Element (SE) **Logging &**

Computing Element (CE)

Book-keeping (LB)

GGGG **Job Status: Scheduled Enabling Grids for E-sciencE** submitted Replica Catalogues (RC) **Information** Service (IS) waiting ready scheduled Resource **Broker (RB)** Job Submission **Storage** Service (JSS) Element (SE) **Logging & Computing Element (CE) Book-keeping (LB)**

Job Status: Running

GGGG **Job Status: Done Enabling Grids for E-sciencE** submitted Replica Catalogues (RC) **Information** Service (IS) waiting ready scheduled running done Resource **Broker (RB)** Job Submission **Storage** Service (JSS) Element (SE) Logging &

Computing Element (CE)

Book-keeping (LB)

GGGG Job Status: OutputReady **Enabling Grids for E-sciencE** submitted Replica Catalogues (RC) **Information** Service (IS) waiting ready scheduled running done Resource outputread **Broker (RB)** Job Submission **Storage** Service (JSS) Element (SE) **Logging & Output Sandbox**

Computing Element (CE)

Book-keeping (LB)

Job Status: Cleared

Enabling Grids for E-sciencE Example1; Example2 submitted Replica Catalogues (RC) **Information** UI Service (IS) waiting ready scheduled **Output Sandbox** running done outputready Resource **Broker (RB)** cleared Job Submission **Storage** Service (JSS) Element (SE) **Logging & Computing Element (CE) Book-keeping (LB)**

