

Simulations and Plans for a Beam-Loading Compensation Experiment in CTF3

Oleksiy Kononenko CERN and JINR

CLIC Workshop, CERN, 29/01/2013

Outline

- Introduction and Motivation
- Possible experiments in CTF3
- Simulation of RF power production
- Optimization of RF pulse shape
- Conclusions and further steps

Introduction and Motivation

Beam-loading compensation is an important CLIC performance issue. In order to keep the luminosity losses less than 1% the rms of bunch to bunch relative energy spread must be below 0.03%

CLIC CDR, §2.5.8, http://project-clic-cdr.web.cern.ch/project-clic-cdr

Beam-Loading Compensation for CLIC

To compensate for a transient beam-loading in CLIC main linac a specially shaped ramped pulse is needed ensuring the CLIC requirement of 0.03% for the energy spread in main beam.

O. Kononenko and A. Grudiev, Transient beam-loading model and compensation in Compact Linear Collider main linac, Phys. Rev. ST Accel. Beams 14, 111001 (2011) http://prst-ab.aps.org/abstract/PRSTAB/v14/i11/e111001

CLIC vs CTF3: Layouts

CLIC Layout

CTF3 Layout

CLIC vs CTF3: Relevant Parameters

	CLIC	CTF3		
	Drive Beam			
Delay loop	x2	x2		
Combiner Ring #1	x3	x4		
Combiner Ring #2	x4	-		
PETS length	0.213 m	1 m		
PETS power	63.1 MW	30-70 MW		
Pulse length	244 ns	140-280 ns		
	Main Beam			
Bunch Frequency	2 GHz	1.5 GHz		
Number of Bunches	312	1-226		
Bunch Charge	0.6 nC	0.1-0.6 nC		
Injection Energy	2.424 GeV	177 MeV		
Injection Energy Spread	1.3% (at linac injection)	<1% (from CALIFES)		

CTF3 Experiments

Ultimate goal: optimize the RF power shape generated in PETS varying delays in the drive-beam buncher to minimize the energy spread in the accelerated probe beam

Not enough charge in probe beam to produce beamloading effect comparable to CLIC, however we could **reduce the power and investigate the scaled phenomena**

CTF3 Experiments

Realistic experiment: produce an optimized RF pulse shape in PETS and take beam-loading into account numerically to calculate the energy spread

We can measure RF power generated in PETS as well as scan the voltage profile in AS with a very low charge probe beam

PETS and AS's in TBTS

1m PETS and 2 TD24 accelerating structures are installed currently in TBTS. Recirculation is not used for the moment.

PETS and 2 AS's as installed in TBTS Roger Ruber, 14/09/2012

RF Generation in PETS

RESULT

The complete system single bunch response and spectrum

RF Generation in PETS

- no artificial phase delay for tuning

PETS Bunch Response Simulation

Investigating the spectrum one can see that the operating frequency as calculated in GdfidL is higher than the design one, since the volume of the cubic mesh is smaller than the real PETS volume.

Igor Syratchev's simulation in GdfidL, $\sigma = 2mm$

PETS Spectrum Scaling

We scale the frequency range appropriately to overcome the GdfidL numerical effect: $R_{GdfidL}(t) \rightarrow [fft] \rightarrow R_{GdfidL}(f) \rightarrow [f scaling] \rightarrow R_{scaled}(f) \rightarrow [ifft] \rightarrow R_{scaled}(t)$

Scaled and simulated PETS spectrums

Scaled and simulated PETS bunch responses

Beam-Loading Simulation Tool

The tool has been originally developed for the CLIC RF pulse shape optimization (to compensate transient beam-loading) and now has been extended to cover CTF3.

- combination schemes: with/without DL, CR1, CR2
- transient bunches during phase switch
- phase variation
- charge variation
- bunch length variation

Simulation of RF Power Production

We're simulating power shapes for different drive beam profiles as well as taking phase, charge and bunch length variations into account. For these simulations we normalize the power to the CLIC power level of 63.1 MW.

Frequency, GHz	Combination Factor	Uncombined Pulse Length, μs	Combined Pulse Length, μs	Number of Bunches
1.5	-	1.12	1.12	1680
1.5	2x4	1.12	0.14	1680
3	-	1.12	1.12	3360
3	4	1.12	0.28	3360

Combination schemes currently available in CTF3

Frequency Effect

	Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
	1.5/3	x8/x4/No	No	No	No
70	F F F		70		
60			60		
50					-Uncombined -x4 combination
40			40 		
30			2 30 30		
20			20		
10			10		
-10) 200 400	600 800 1	000 1200 -10	200 400 500	800 4000 40
·	200 400	Time [ns]	1200 0	200 400 600 Time [800 1000 12 ns]
	Power for 1.	5 GHz drive bea	m	Power for 3 GH	Iz drive beam

Power for 1.5 GHz drive beam

Drive Beam Phase Measurements

Drive beam phase variation measured by Emmanouil Ikarios on 19.09.2012 at **CT.STBPR0532S**, 10.4 ns time resolution, 1217 pulses.

Position of CT.STBPR0532S in CTF3

Phase variation along the drive beam @3 GHz

Phase Variation Effect

Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
1.5/3	x8/x4	Yes/No	No	No
70 60 50 40 30 20 10 -10 20 40 40 60 40 60 40 60 60 60 60 60 60 60 60 60 6	Perfec Perfec Max Perfec Max Perfec Max 	TO 60 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 10 0 10 0 140 160 -10 0	50 100 150 Time [n	Perfect Max Mean Min

Power for 1.5 GHz x8 drive beam

Power for 3 GHz x4 drive beam

Phase Measurements: Improved Phase

Improved phase variation measured by Frank Tecker on 09.10.2012 at **CL.STBPR0475S**, 10.4 time resolution

Position of CL.STBPR0475S in CTF3

Phase variation along the drive beam @1.5 GHz

Phase Variation Effect

Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
1.5/3	x8/x4	Yes/No	No	No

Power for 1.5 GHz x8 drive beam

Power for 3 GHz x4 drive beam

Drive Beam Charge Measurements

Drive beam charge variation measured by Reidar Lunde Lillestol on 20.11.2012 at **SVBPM0150S** 5.2 ns time resolution, R56 = 0.2

Position of SVBPM0150S in CTF3

Charge variation along the uncombined drive beam @3 GHz

Charge Variation Effect

Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
1.5/3	x8/x4/No	No	Yes	No

Power for 1.5 GHz drive beam

Power for 3 GHz drive beam

Bunch Length Measurements

Javier Barranco Garcıa, "R56 and bunch length measurement", https://indico.cern.ch/getFile.py/access?contribId=1&resId =0&materiaIId=slides&confId=211350

Bunch length measurements in CTF3, http://elogbook/eLogbook/eLogbook.jsp?shiftId=1049890

We also take into account that the measurements "length" is indeed FWHM, so we use the formula to convert to sigmas:

$$FWHM = 2\sqrt{2\ln 2} \ \sigma \approx 2.3548200 \ \sigma.$$

Fitted Bunch Length Variation

Fitted typical bunch length variation along the 3GHz drive beam

Bunch Length Effect

Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
1.5/3	x8/x4/No	No	No	Yes

RF Power Production Simulation

Frequency, GHz	Combination	Phase variation	Charge variation	Bunch length variation
1.5/3	x8/x4/No	Yes	Yes	Yes

Optimized Power for 2x4 Combination

We consider 1.5 GHz beam and 2x4 combination, normalizing to the CLIC power level of 63.1 MW since in this case we can produce upto 70MW of power in CTF3. We do the optimization only for $N_b = 100$ in main beam, since the RF pulse is only 140ns.

RF Power shape optimized with 7 knobs

Unloaded/loaded/beam-induced voltages Energy spread = 0.02%, T_{inj} = 88.054 ns

Optimized Power for x4 Combination

We consider 3 GHz beam and x4 combination normalizing to 30 MW power level. We downscale the beam-loading to keep the $V_{unloaded}/V_{beam}$ ratio constant.

RF Power shape optimized with 3 knobs

Unloaded/loaded/beam-induced voltages Energy spread = 0.48%, T_{inj} = 87.637 ns

Conclusions and Further Steps

- Variety of the performed RF power simulations illustrates that we need to take into account many measured drive-beam parameters and settings in order to predict the generated power correctly
- Pulse shape optimization results look reasonable and we could proceed with the measurements and comparisons
- Experiment is scheduled for the beginning of February 2013

Thank you for your attention!

and special thanks to Roberto Corsini, Frank Tecker and Alexej Grudiev for support of this work