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Introduction and Motivation

Beam-loading compensation is an important CLIC
performance issue. In order to keep the luminosity losses
less than 1% the rms of bunch to bunch relative energy
spread must be below 0.03%

CLIC CDR, §2.5.8, http://project-clic-cdr.web.cern.ch/project-clic-cdr
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Beam-Loading Compensation for CLIC

To compensate for a transient beam-loading in CLIC main linac a specially shaped

ramped pulse is needed ensuring the CLIC requirement of 0.03% for the energy spread
in main beam.
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O. Kononenko and A. Grudiev, Transient beam-loading model and compensation in
Compact Linear Collider main linac, Phys. Rev. ST Accel. Beams 14, 111001 (2011)
http://prst-ab.aps.org/abstract/PRSTAB/v14/i11/e111001
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CLIC vs CTF3: Layouts
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CLIC vs CTF3: Relevant Parameters
CTF3

Drive Beam

Delay loop X2 X2
Combiner Ring #1 X3 x4
Combiner Ring #2 x4 -
PETS length 0.213 m 1m
PETS power 63.1 MW 30-70 MW
Pulse length 244 ns 140-280 ns

Main Beam

Bunch Frequency 2 GHz 1.5 GHz
Number of Bunches 312 1-226
Bunch Charge 0.6 nC 0.1-0.6 nC
Injection Energy 2.424 GeV 177 MeV
Injection Energy Spread 1.3% (at linac injection) <1% (from CALIFES)
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CTF3 Experiments

Ultimate goal: optimize the RF power shape generated
in PETS varying delays in the drive-beam buncher to
minimize the energy spread in the accelerated probe
beam

Not enough charge in probe beam to produce beam-
loading effect comparable to CLIC, however we could
reduce the power and investigate the scaled
phenomena



CTF3 Experiments

Realistic experiment: produce an optimized RF pulse
shape in PETS and take beam-loading into account
numerically to calculate the energy spread

We can measure RF power generated in PETS as well as
scan the voltage profile in AS with a very low charge
probe beam



PETS and AS’s in TBTS
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RF Generation in PETS

Measured transfer spectra of the recycling loop
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RF Generation in PETS

PETS bunch response
phase and amplitude
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Amplitude [a.u.]

PETS Bunch Response Simulation

Investigating the spectrum one can see that the operating frequency as calculated in
GdfidL is higher than the design one, since the volume of the cubic mesh is smaller than

the real PETS volume.

o

Time [ns]

8

12.294 GHz

10°

104 1
|
|

(=}

Amplitude [a.u.]
= =
o o

10

-6

10 0 10

20 30 40 50 60 70 80 90 100
Frequency [GHz]

PETS bunch response PETS bunch response spectrum

lgor Syratchev’s simulation in GdfidL,
c=2mm 12



PETS Spectrum Scaling

We scale the frequency range appropriately to overcome the GdfidL numerical effect:
Regfiarlt) =2 [Fft] = Rgyq, (f) = [f scaling] & R4 (F) = [ifft] > R, jeq (t)
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Beam-Loading Simulation Tool

The tool has been originally developed for the CLIC RF pulse shape optimization (to
compensate transient beam-loading) and now has been extended to cover CTF3.
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Simulation of RF Power Production

We're simulating power shapes for different drive beam profiles as well as taking phase,
charge and bunch length variations into account. For these simulations we normalize the
power to the CLIC power level of 63.1 MW.

Frequency, Combination Uncombined Combined Number of
GHz Factor Pulse Length, pus | Pulse Length, us Bunches
1.5 -

1.12 1.12 1680
1.5 2x4 1.12 0.14 1680
3 - 1.12 1.12 3360
3 4 1.12 0.28 3360

Combination schemes currently available in CTF3
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Frequency Effect
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Phase [deq]

-10

-20

-30

Drive Beam Phase Measurements

Drive beam phase variation measured by Emmanouil Ikarios on 19.09.2012 at

CT.STBPR0532S, 10.4 ns time resolution, 1217 pulses.
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Phase Variation Effect
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Phase Measurements: Improved Phase

Improved phase variation measured by Frank Tecker on 09.10.2012 at
CL.STBPR0475S, 10.4 time resolution
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Power [MW]

Phase Variation Effect
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Drive Beam Charge Measurements

Drive beam charge variation measured by Reidar Lunde Lillestol on 20.11.2012 at
SVBPMO0150S 5.2 ns time resolution, R56 = 0.2
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Power [MW]

Charge Variation Effect
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Bunch Length Measurements

Javier Barranco Garcia, “R56 and bunch length
measurement”,
https://indico.cern.ch/getFile.py/access?contribld=1&resld
=0&materialld=slides&confld=211350

Bunch length measurements in CTF3,
http://elogbook/eLogbook/eLogbook.jsp?shiftld=1049890

We also take into account that the measurements “length”
is indeed FWHM, so we use the formula to convert to
sigmas:

FWHM =2v2In2 o =~ 2.3548200 o.
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Fitted Bunch Length Variation
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Power [MW]

Bunch Length Effect
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RF Power Production Simulation

Frequency, GHz | Combination Phase Charge Bunch length
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Power [MW]

Optimized Power for 2x4 Combination

We consider 1.5 GHz beam and 2x4 combination, normalizing to the CLIC power level
of 63.1 MW since in this case we can produce upto 70MW of power in CTF3. We do the
optimization only for N, = 100 in main beam, since the RF pulse is only 140ns.

70 ! 30

—CTF3 Pulse - IVunIoadedI
r—_—v—_\
/\ IVbeamI

\\ —Re(V|aged)

N
[$3]

w
Y e
Voltage [MV]
& S
\
/

T

— ./ \

0 1 | 2 3 4
|
| f
| |
-10 * 0 % N

0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450
Time [ns] Time [ns]

3]

RF Power shape optimized with 7 knobs Unloaded/loaded/beam-induced voltages
Energy spread = 0.02%, T . = 88.054 ns

inj

27



Optimized Power for x4 Combination

We consider 3 GHz beam and x4 combination normalizing to 30 MW power level. We

downscale the beam-loading to keep the V,,caded/Voeam Fatio constant.
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Conclusions and Further Steps

e Variety of the performed RF power simulations
illustrates that we need to take into account many
measured drive-beam parameters and settings in order
to predict the generated power correctly

* Pulse shape optimization results look reasonable and
we could proceed with the measurements and
comparisons

* Experiment is scheduled for the beginning of February
2013
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