

Turkish Accelerator Center Project

Avni Aksoy Ankara University

On behalf of TAC Collaboration Team

- A brief history of TAC Project
 Phases of TAC project
- **TAC** sub projects
 - o TARLA
 - o TAC-SR
 - o TAC-SASE
 - o TAC-PF
 - o TAC-Charm
- □Road map

TAC was born

The TAC project have been first proposed in 2000's as linac-ring type e-e+ collider with 1 GeV center of mass energy as Φ factory.

Additionally in the proposal;

- Electron linac of the complex could be used to drive SASE undulators.
- Positron ring of the complex could be used as SR source.

1st phase (Preliminary report / 1997-2001) Outcome: The Preliminary Report in 2001

Accelerator Center (TAC) Project have been proposed

2nd phase (Feasibility Report /2002-2005)

Outcome : The Feasibility Report in 2005,

- > Change from Φ factory to Charm factory
- Main parameters of the proposed facilities
- Types and technologies of accelerators
- Research potential of the proposed facilities of TAC are explained

3rd phase (Current Phase / 2006-2014)

The First Facility, Institute, Conceptual and Technical Design Reports of Proposed TAC Facilities

Started in 2006 as collaboration of 12 Turkish universities under coordination of Ankara University (~155 people)

□Goal of the phase

- Establishment of The Institute of Accelerator Technologies (IAT)
- Establishment of (Oscillator mode IR FEL & Bremsstrahlung) Facility (TARLA, building constructed and installation continuing).
- Achievement of the Technical Design Reports of TAC Synchrotron Radiation facility TAC Proton Accelerator Facility
- Achievement of the Conceptual Design Reports of TAC SASE FEL and TAC Particle Factory

TAC collaboration

TAC: An Interuniversity Collaboration Project Team: 69 staff with PhD + 86 graduate students and engineers

Ankara University (Coordinator)

Gazi University

İstanbul University

Uludağ University

Dumlupinar University

Osmangazi University

Boğaziçi University

Doğuş University

Erciyes University

Süleyman Demirel University

Niğde University

Gebze Institude of Technology

31.01.2013

Installation and commissioning continuing Detailed Design Report phase Conceptual Design Report phase Feasibility Report phase

31.01.2013

Institute of Accelerator Technologies of Ankara University

 Is is located about 15 km south of Ankara, in Gölbasi campus area of Ankara University

31.01.2013

- TARLA basically has been proposed as a first step of TAC project.
- It will generate Free Electron Laser between 3-250 µm using 15-40 MeV CW electron beam and two different undulators.
- Additionally, a Bremsstrahlung station has also been proposed for nuclear studies.

31.01.2013

~ 250 keV,

Main accelerator of TARLA

46													
	Electron beam parameters of TARLA												
	Parameter	Value	Unit	Sell-									
he	Beam energy	15-38.5	MeV	N D D									
liq	Max average beam current	1	mA	1									
	Micro pulse repetition frequency	13	MHz	Real 1									
	Micro pulse length	0.5-6	ps										
0	Transversal emittance	< 13	mm.mrad	A Party									
	Longitudinal emittance	< 50	keV.ps	FIL D									
he liq keV, 1r Supe be u This cavit oper 15 tc The ELB	Macro pulse length	CW / 40-100	μs										
1	Macro pulse repetition frequency	CW / 1-100	Hz										
keV, 1 r				E I FISA									
	FEL Parameters of TARLA												
Supe be u	Parameter	U25	U90										
	Wavelength [µm]	2-30	15-250	nics plant									
This	Micropulse repetition [Mhz]	13	13										
oper 15 tc	Max. peak power [MW] *0.1-3	0.1 – 6	0.01-2										
	Pulse length [ps] *	1-10	1-10	c system									
The	Average power [W] *	1-100	1-100	акен бу									
ELB	Max. pulse energy [µJ] *	0.1-3	0.1-3										

The ELB Max. pulse energy [µJ] * 0.1-3 Brightness [ph/(s mm² mrad² 0.1% B.W.)]* ~10^30

31.01.2013

CLIC Workshop 2013

missioning

~10^29

an UNIVE				TÜRK HIZLAGE	NRICI MERKEZ
	TACS	SR S	Source		TAC
1946		Storage Ring Parar	LERATOR		
		Th	Parameter	Value	
and the second	and the second sec		Energy (GeV)	3	
X	A.	U	Circumference (m)	474	
		C	Beam Current (mA)	500 mA	
			Bet. Tunes Qx/Qy	32.22/5.17	
I_{i}		O	Nat. Chromaticity x0x /x0y	-89.3/-32.22	
4 1		0	Cor. Chromaticity x0x /x0y	0.0/0.0	
+ <mark>-</mark>	Booster Ring	Ŭ	Energy loss / turn (keV)	312.6	
4	11	C	H. emittance (nm)	0.65	
	/	C a c	V. emittance (nm)	0.0065	
4	1	Sec	Betaxmax (m)	21.10	
× \	Injector		Betaymax (m)	27.2	
▲ ▲ ▲ ▲	<u>~40 m</u>		Betax in the mid. of straight sect.	18.0	ire)
/ 🔨 🛀			Betay in the mid. of straight sect.	9.8	
			Dispx in the middle of straight sect.	0.097	
Six ning	H		Number of straight section	18	
			Length of straight section (m)	5	
Main Cell of Storage R	ling		Rf Voltage (MV)	3.5	8 (E)
• Four bending magn	et of each 2 m length an	d 5º def	Harmonic number	760	6 9
	note (4 different type)		Max. Number of bunch	760	4
	nets (4 unterent type)		Bunch charge (nC)	1.04	2
 5 family of sextupol 	es are placed along the	main cel	RMS Bunch length (mm)	2.24	2
the chromaticity			Momentum Acceptence (%)	4.5	8
			Coupling (%)	1	c
The ring consist of ²	18 main cells		Toushek Life time (h)	OPA: 10.5	D.
The length of sturing		a a U a c	El. Scat. Lifetime (h)	142	4
ine length of straig	gnt sections between	cells a	Inel. Scat. Lifetime (h)	619	2
	-		Tot lifetime (h)	9.0	
31.01.2013	C	LIC Wor	kshop 2013		

TAC SR user committees

First International Workshop on Machine and Research Aspects of the Proposed Turkish Light Sources (TAC-LSUM2011) July 4–6, 2011 Doğus University, Istanbul, Turkey

TAC SR User Committe with 13 staff is established. July 6, 2011 Coordinator : Dr. Ozgul Kurtulus

Scientific collaboration between TAC and European Synchrotron User Organisation (ESUO) and European Light Sources Activities (ELISA) (September 2011)

1st meeting of TAC SR User Committee: Oct. 22, 2011, IAT, Ankara 2nd meeting of TAC SR User Committee: March 24, 2012, Dogus Univ, Istanbul

It is planed to apply government in 2014 for the support to TAC SR in three phase. (1- TDR , 2- Injector section , 3- SR and user labs)

31.01.2013

TAC SASE FEL project

\Box Main goal of this light source		Parameter	Unit	Value	
a high power (GWs)	Ele	Electron beam energy, Ebeam	GeV	1	
\circ mgn power (Gws),	ctron be	Bunch charge, Q	nC	1	
o ultra bright (~10°° photons/s/m		Normalized emittance, εΝ	π .mm.mrad	2	
o tunable free electron laser (VL		FWHM bunch length, σz	ps	0,5	
o aiming to enable femtosecond	me	Peak current, Ipeak	kA	2	
physics, plasma and condense		Energy spread, ΔE/E	-	2.10 ⁻⁴	
Machine: Machine 1 GeV ele		Parameter	Unit	Value	
		Undulator gap, g	cm	0,8	
	dul	Undulator period, λu	cm	1,5	
Wavelength range: VUV - So Bunch Comp		Peak magnetic field, B _{peak}	Т	0,787	
		K parameter	-	1,1	
		Number of undulator periods, Nu	-	1580	
		Undulator length, Lu	m	23,7	
RF Gun		Parameter	Unit	Value	
		Pierce parameter, ρ	-	6,327.10 ⁻⁴	
		1D gain length, LG,1D	m	1,089	
	⁻ EL paramet	3D gain length, LG,3D	m	2,659	
		Saturation length, L _{sat}	m	21,8	
		FEL wavelength, λ_{FEL}	nm	3,15	
1μm		Saturation power, P _{sat}	GW	1,265	
Drive Laser	ers	FEL energy, EFEL	keV	0,392	
		Photons per pulse#	-	1,29.10 ¹³	
		Energy per pulse#	J	8,15.10-4	
1 eV		Peak flux#	photons/s	1,45.10 ²⁵	

X-band Linac based FEL facility

Meeting on X-band Linac based FEL facility 17-18 January 2013, Ankara, Turkey

Proton Accelerator facility

- TAC Proton Accelerator is proposed as a multipurpose, GeV energy and MW power scale machine
- □ 3 -20-65-150-250 MeV steps are planned as low energy part and high energy part of machine will be achieve to 2 GeV

Parameter	Unit	Value
Particle Type	H-	
Input Energy	3	MeV
Exit Energy	2000	MeV
Bunch Frequency	350	MHz
Peak Current	30	mA
Average Current	0.03	mA
Beam Pulse Length	300	μs
Beam Duty factor	9	%
Repetition Frequency	30	Hz
Number of Particles Per Pulse	5,3x10 ¹⁴	
Input Norm. Emittance (Transverse)	0,276	mm.mrad

□ It is planed to apply government for the support to first 3 MeV section and TDR of PA facility

Particle (Charm) Factory

Asymmetric linac- ring type e⁻ — e⁺ collider. Beam energies: Ee⁻=1 GeV,

> $Ee^+=3.56 GeV$, Lumi=1.4x10³⁵cm⁻²s⁻¹

Ec.m.= 3.77 GeV

Based on ISAC and ECFA recommendations, it is planned that, TAC PF will be transformed to a global project with international collaborations.

e⁺-e⁻ Colliders: Past, Present and Future

Overall project milestones

	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
TARLA																
SR																
SASE FEL																
LE PA																
HE PA																
PF																

 Feasibility
 CDR
 TDR
 Build. and Installation
 In operation

- **TARLA** :Turkish Accelerator and Radiation Laboratory in Ankara (Oscillator FEL)
- **LE PA** :Low Energy Proton Accelerator
- **HE PA** :High Energy Proton Accelerator
- SR :Synchrotron Radiation
- **SASE FEL** :Self Amplified Spontaneous Emission Free Electron Laser
- **PF** :Particle Factory (Super Charm Factory)

Scientific Advisory Committee of TAC

- □ Ercan ALP (Argonne National Laboratory, USA) (Chairman)
- Behçet ALPAT (INFN Perugia, Italy)
- David M. ASNER (PNL, USA)
- Swapan CHATTOPADHYAY (Cockroft Institute, UK)
- Eugene LEVICHEV (BINP, Russia)
- □ Yasar ONEL (Univ. of Iowa, USA)
- Luigi PALUMBO (INFN Frascati, Italy)
- □ Ken PEACH (Oxford University, UK)
- Roland SAUERBREY (FZD, Germany)
- Zehra SAYERS (Sabancı University, Turkey)
- Gökhan UNEL (UCI & CERN)
- □ Ali TANRIKUT (TAEK, Turkey)
- Helmut WIEDEMANN (Stanford University, USA)
- Frank ZIMMERMANN (CERN)

1st Meeting: October 8-9, 2009 Ankara University Ankara, Turkey

2nd Meeting: June 21-22, 2010 Boğaziçi University Istanbul, Turkey

3rd Meeting: May 9-10, 2011 Ankara University **Ankara, Turkey**

4th Meeting: June 11-12, 2012 Istanbul University Istanbul, TURKEY

Machine Advisory Committee of TARLA

Peter MICHEL (HZDR-ELBE, Germany) (Chairman)
 Hideaki OHGAKI (Kyoto University, Japan)
 Dieter TRINES (DESY, Germany)
 Ernst WEIHRETER (HZB-BESSY, Germany)
 Jean R. DELAYEN (JLab, USA)

1st Meeting: December 4-5, 2009 Ankara University

2nd Meeting: September 2-3, 2010 Bodrum, Mugla

3rd Meeting: May 12-13, 2011 IAT, Ankara University

4th Meeting: March 8-9, 2012 IAT, Ankara University

National Organizations

- □ National Congress on Particle Accelerators and Their Applications (UPHUK): Every three years since 2001
- National Summer School on Particle Accelerators and Detectors (UPHDYO): Every year since 2005.

International planned organizations

- Linear Collider School (LCS, 2013, Turkey)
- CERN Accelerator School (CAS, 2014, Turkey)
- International Beam Instrumentation Conference (IBIC, 2019, Turkey)

Turkish Atomic Authority (TAEK) Proton Accelerator Facility

The machine

- o 15-30 MeV proton cyclotron
 - ➤ (Cyclon 30, IBA)

D Purpose

- o Radioisotope production
- o R&D with proton beam

Facility Location:

- o Sarayköy Nuclear Research and Training Center (SANAEM), Ankara
- The facility has already been commissioned and opened to service on May 29, 2012 by Prime Minister.

Conclusions

We have a time schedule for the proposed facilities of TAC, up to end of 2020's.

□ Schedule for near future:

- o TARLA accelerator will be ready at the end of 2015.
- o A new project (TARLA-II) is developed to set up experimental stations.
- o LE PAF project will be presented to the MD in 2013, for a 2014-2018 period.
- o TAC SR project will be presented to the MD in 2014, for a 2015-2023 period.
- o The Industrial Strategy Report of TAC is under consideration.
- o Site choice for the Turkish Accelerator Center will be worked on 2013.
- □ Turkish parliament is working on a new **constitution** and laws of higher education and national research centers. These dedicated laws will open new horizons for TAC.
- We wish to collaborate with CERN-CLIC team for a FEL facility based on Xband linac for TURKSEL