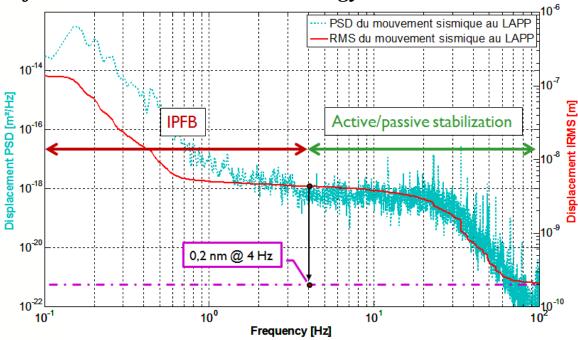


QD0 Stabilisation

L. Brunetti¹, J. Allibe¹, J.-P. Baud¹, G. Balik¹, G. Deleglise¹, A. Jeremie¹, S. Vilalte¹
B. Caron², A. Badel², R. Le Breton²
(LAViSta Team)

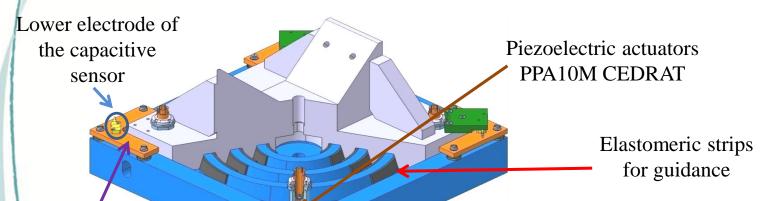
1: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France &
2: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France


Outline

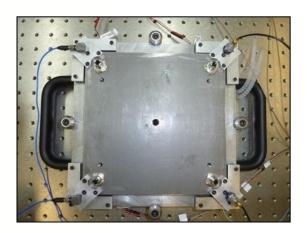
- Introduction
- Final Focus quadrupole stabilisation, performances and limitations
- Developments in progress

Introduction

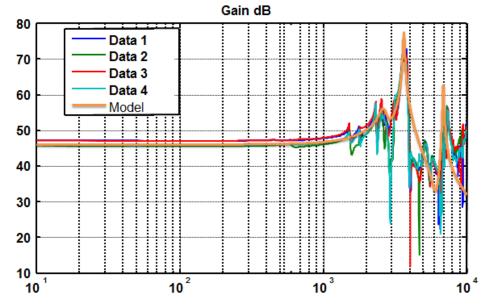
• Final focus: beam stabilization strategy



- ➤ At the IP (mechanical + beam feedback), we aim at **0,1mm at 0,1Hz**
- ➤ IP Beam based feedback : already developed by LAPP in collaboration with CERN since 2010
 - Caron B et al, 2012, "Vibration control of the beam of the future linear collider", Control Engineering Practice.
 - G. Balik et al, 2012, "Integrated simulation of ground motion mitigation, techniques for the future compact linear collider (CLIC) ", Nuclear Instruments and Methods in Physics Research
- Mechanical stabilisation has to be reached



Mechanical active stabilisation – the developed active foot


• CAD of the foot:

Fine adjustments for capacitive sensor (tilt and distance)

Model & experimental characterisation:

Mechanical active stabilisation – experimental setup

Control architecture:

Matlab and dSPACE ControlDesk For monitoring and analysis

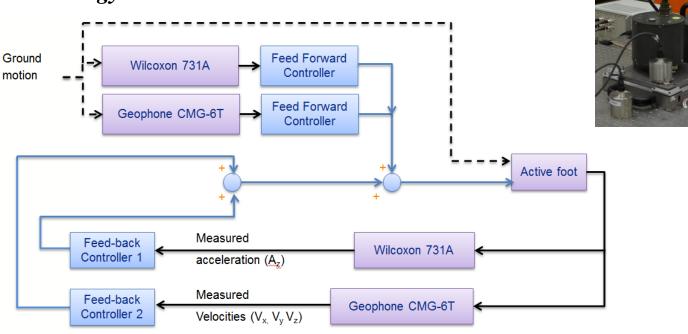
Used sensors:

- Geophones : GURALP

CMG-6T

- Accelerometers : **WILCOXON 731A**

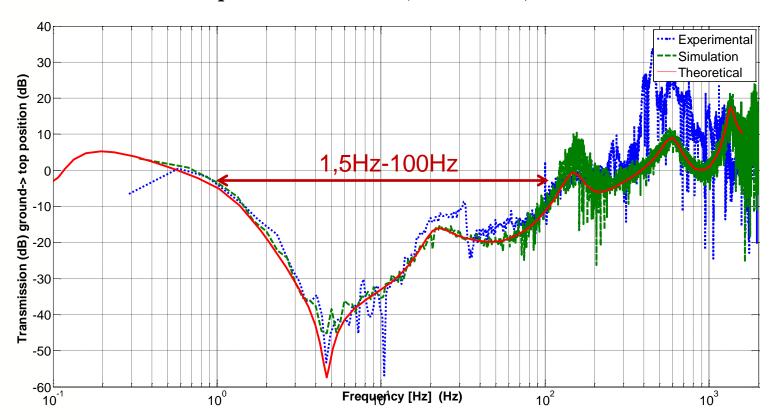
Amplifiers, filters input/output board for signal conditioning


All is taken into account in simulation (noise, ADC, DAC...).

dSPACE Real time hardware for **Rapid Control Prototyping**

Mechanical active stabilisation – Control

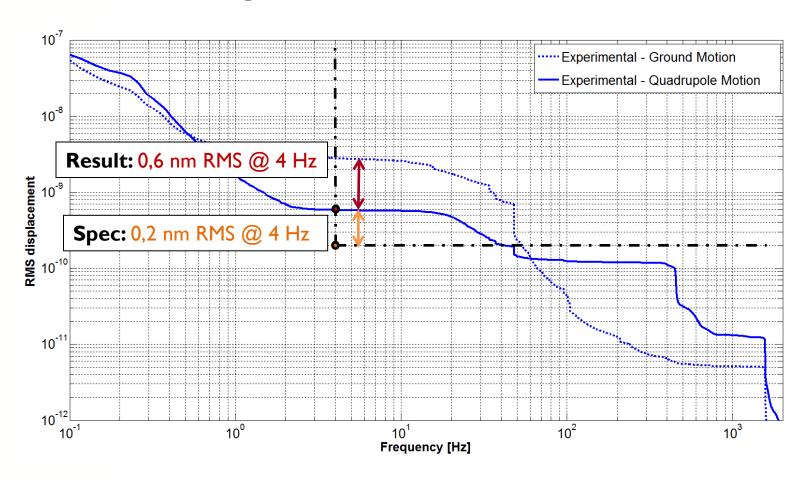
Control strategy:



- ✓ Feedforward with 1 geophone and 1 accelerometer
- ✓ Feedback (loop shaping) with 1 geophone and 1 accelerometer
- ✓ Sensors are dedicated to selected bandwidth.

Mechanical active stabilisation – Results

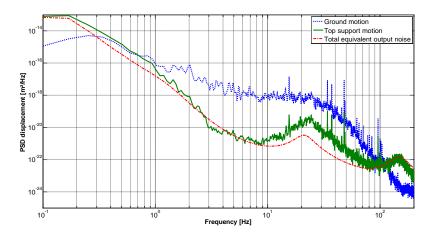
• Simulation and experimental results (attenuation):



- > Attenuation up to 50dB between 1,5-100Hz
- > It matches with the simulation

Mechanical active stabilisation – Results

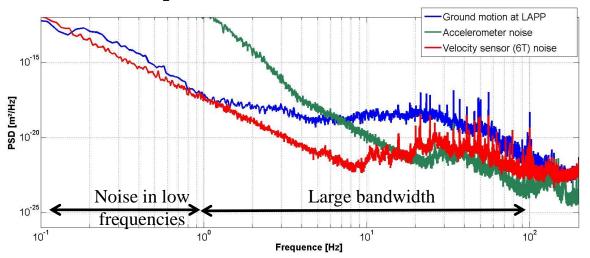
• Simulation and experimental results (RMS):



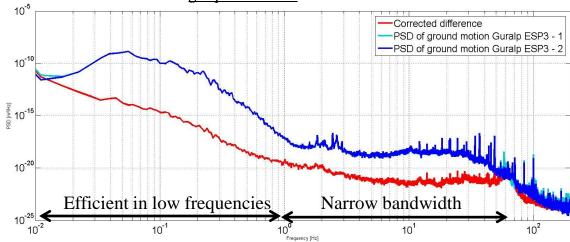
➤ Publication in progress (accepted): Balik et al, "Active control of a subnanometer isolator", JIMMSS.

Mechanical active stabilisation

- Status next this stage (done with Guralp 6T & Willcoxon):
 - Promising results
 - Main limitations :
 - Noise of the sensors
 - Transfer function of the sensors



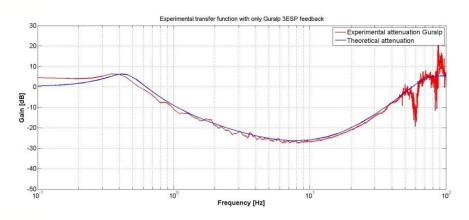
- Advantage: we are able to define the acceptable noise and the performances of the sensor that we need (thanks to the accuracy of the simulation vs experimental tests)
- Strategies:
 - > Tests with a new generation of sensors
 - > Development of a new and dedicated sensor



Mechanical active stabilisation – New geophone

• Tests with the Guralp 6T - 3ESP:

- Ground Measurement with geophones 6T and accelerometers Willcoxon side by side -


- Ground Measurement with geophones 3ESP side by side -

Mechanical active stabilisation – New geophone

• Obtained results:


• Example of first obtained results (has to be improved):

Experimental transfer function with only Feedback Guralp 3ESP no feedforward, no accelerometer

For the whole control, it requires some mechanic upgrades

Difficulty to manage the sensor model :

- Experimental transfer function of « foot + sensor » -

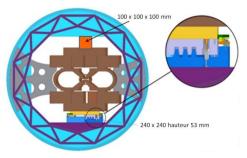
> low frequencies vs model

With Guralp 6TWith Guralp 3ESP

New sensor – Measurements

• A patent is in progress...

✓ G. Deleglise, J. Allibe, G. Balik & J.P. Baud


- > Not allow to show the curves at this moment...
- Performances: close to a Guralp 6T on a large bandwidth (1 +100Hz).
 - better than a Guralp 6T for the low frequencies (0.4 1Hz) and close to the 3ESP.
- First tests in control...

Sensor status

- 1st prototype:
 - Performances
 - Bandwidth (large and tunable)
 - An important new knowledge for the team
 - Cost about 2000 euros + raw material
- Efficient sensor for "measurement"

- Objective of the next prototype :
 - Keep at least the current performances
 - To optimize the model of the sensor
 - To reduce the cost (40%)
 - To minimize the size :
 (100 x 100 x 100 mm vs 250 x 250 x 110 mm)
- Improvements in order to do "measurement and control"

Conclusions

- Active table:
 - Mechanics OK for 1 degree of freedom
 - Approach validated and first promising results
 - Sensor noise limitation → investigations with 3ESP
- LAPP sensor prototype n°1:
 - Great results for a first prototype which is mainly dedicated for measurement
- Next generation of LAPP sensor:
 - Measurement and control
 - Minimise the size and optimise the cost
 - Possibility to test it in a realistic environment? ATF2, CTF3?

