
Performance of TBB
Based Framework
Demo

Christopher Jones FNAL

TBB Study Concurrent Frameworks

Outline
TBB Threading Model

Measurements

Conclusion

2

TBB Study Concurrent Frameworks

TBB Task Model
Pre-declare how many threads should be used

For each thread, there is a work queue

task::spawn adds a task to the queue for the thread that called
spawn

tasks are pulled from the work queue in Last In First Out order

task::enqueue puts tasks on a shared list

If a queue is empty, it will
See if a task is on the shared list and if so take the oldest one, else
Steal oldest task from another queue

A task can explicitly return a new task that is to be run next
Guaranteed to run on the same thread

3

TBB Study Concurrent Frameworks

TBB Task Model
Tasks are pulled in Last In First Out order

4

Threads

1
Queue

2
Queue

31

2

TBB Study Concurrent Frameworks

TBB Task Model
Tasks are pulled in Last In First Out order

5

Threads

1
Queue

2
Queue

31 2

TBB Study Concurrent Frameworks

TBB Task Model
Spawned tasks go into the same thread queue as creating task

6

Threads

1
Queue

2
Queue

31 2

TBB Study Concurrent Frameworks

TBB Task Model
Spawned tasks go into the same thread queue as creating task

7

Threads

1
Queue

2
Queue

31 2

4

5

TBB Study Concurrent Frameworks

TBB Task Model
Spawned tasks go into the same thread queue as creating task

8

Threads

1
Queue

2
Queue

31

4

5

TBB Study Concurrent Frameworks

TBB Task Model
Spawned tasks go into the same thread queue as creating task

9

Threads

1
Queue

2
Queue

31

4

5

TBB Study Concurrent Frameworks

TBB Task Model
An empty thread queue steals oldest task from another queue

10

Threads

1
Queue

2
Queue

1

4

5

TBB Study Concurrent Frameworks

TBB Task Model
An empty thread queue steals oldest task from another queue

11

Threads

1
Queue

2
Queue

14 5

TBB Study Concurrent Frameworks

Model’s Advantage
Related tasks are scheduled on same thread when possible

Improves data locality
A task that is waiting for another task probably wants data it creates
Right after prefetch data task completes the module’s task will then run

Should create a smaller list of waiting tasks in the thread queues
TBB does a depth first traversal of tasks while libdispatch does a breadth first
The prefetching and then running one module will happen before going on to
prefetch and run the next module

12

TBB Study Concurrent Frameworks

Synchronization
TBB has only primitive task synchronization mechanisms
task::execute() can return a pointer to the next task that must be run
A task can have children and when all children have finished the parent will run

A child can only have one parent
There are no advanced mechanisms to deal with resource contention

Only mutex

I built tools on top of TBB primitives
WaitingTaskList

Can hold a series of tasks which will be spawned when ‘doneWaiting()’ is called
Can safely add tasks simultaneously
Can safely add tasks and call doneWaiting simultaneously
Tasks added after doneWaiting is called will be spawned immediately

SerialTaskQueue
Can hold a series of tasks
Only one task will be run at a time
Tasks can be added simultaneously
Tasks are run on a first in first out basis

13

TBB Study Concurrent Frameworks

Measurement Strategy
Approximate reconstruction behavior
489 Producers
2 OutputModules
278 Producers have their data requested directly from OutputModule

Module Dependencies
What data each module uses
Such information is recorded by CMS framework already

Module Timing
Get per event module timing for 2011 high pileup data

~30 interactions per crossing

Feed dependencies and timing to demo framework

Compare timing to a simple single threaded demo framework

14

TBB Study Concurrent Frameworks

Test System
AMD Opteron(tm) Processor 6128

32 Cores

64GB memory

15

TBB Study Concurrent Frameworks

Scaling: 32 Cores

16

Producers fully use a core by doing a numeric integration
calibrated how many seconds per integration step

TBB slightly outperforms libdispatch
TBB was told to use 32 threads for all the above measurements

0

0.3

0.6

0.9

1.2

1.5

0 8 16 24 32 40

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

libdispatch
Single Threaded
TBB

0

0.5

1.0

1.5

0 8 16 24 32 40

Relative to Single Threaded

Th
ro

ug
hp

ut
/ S

in
gl

e
Th

re
ad

ed
 T

hr
ou

gh
pu

t

Number of Simultaneous Events

libdispatch
TBB

TBB Study Concurrent Frameworks

Threads per Event

17

Measurement
Keep number of simultaneous events constant (10)
Vary number of threads (10-30)

1.5 Threads/Event gives 97.6% of max

2 Threads/Event gives 99.8% of max

0.75

0.80

0.85

0.90

0.95

1.00

1.0 1.5 2.0 2.5 3.0

Maximum Throughput Ratio vs Threads/Event

Th
ro

ug
hp

ut
/M

ax
im

um
 T

hr
ou

gh
pu

t

Number of Threads/Number of Simultaneous Events

TBB Study Concurrent Frameworks

Scaling: Infinite Cores

18

All Producers are calling usleep

TBB stops scaling around 2000 simultaneous events (se)
Is using 1.3 threads/simultaneous event
Lowering threads/simultaneous events improves scaling limit slightly

libdispatch hits scaling limit around 1600 se

Single threaded framework hits memory limit at 3000 se

0

50.0

100.0

150.0

200.0

250.0

0 1000 2000 3000 4000 5000

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

libdispatch
Single Threaded
TBB

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Scaled Rate

Ev
en

ts
/S

ec
/S

im
ul

ta
ne

ou
s

Ev
en

t

Number of Simultaneous Events

libdispatch
Single Threaded
TBB

TBB Study Concurrent Frameworks

Max Speed Test

19

Simple Configuration
1 Filter that requests 3 products but doesn’t wait
3 Producers who do not wait
Only 1 simultaneous event

NOTE: libdispatch was built without optimization

Demo
Framework

Max
Throughput

Relative
Slowness

Single
Threaded

1,460,000 1

TBB 375,000 3.9

libdispatch 3,600 406

TBB Study Concurrent Frameworks

Synchronous Event::get
All previous tests were with prefetching
Before running a module would asynchronously prefetch the data it needed

Need to support synchronous Event::get calls
Request from inside a module to get data that isn’t yet in the Event
Needed to support legacy modules
Useful in the future for data that is only needed for some Events
Synchronous get is similar to how threading inside a module would work

libdispatch implementation failed when used for RECO config
Each synchronous Event::get caused working thread to block
libdispatch noticed thread block and spawned new threads
HOWEVER, there appears to be a limit to # of threads libdispatch will spawn
When reach limit, the job is then blocked waiting for work that never runs

TBB implementation works well
tbb::task::wait_for_all doesn’t block threads, instead it processes waiting tasks
tbb uses ‘last in/first out’ for tasks
So Event::get task runs right after it is requested rather than waiting in task list

20

TBB Study Concurrent Frameworks

Conclusion
TBB is easy to build and is designed for C++
libdispatch is difficult to build and requires clang
Apple recently changed libdispatch to require more Objective-C entanglement

TBB has lower CPU overhead than libdispatch
Should allow it to be used with smaller units of work

TBB has primitive synchronization mechanisms
However, more useful ones can be constructed from the primitive ones
libdispatch synch mechanism has a limit which when reached freezes the job

TBB requires that the # of threads be set at the beginning
Workflow management is requiring that jobs only use specified # of cores
But I/O activities that must wait will need their own threads
Must avoid undersubscribing threads since they will busy wait
libdispatch gives no control over how many threads are to be used

TBB is a better match for CMS than libdispatch

21

Backup Slides

TBB Study Concurrent Frameworks23

EventProcessor
processAll()

TBB task
queue

incr_ref

spawn_and_wait_for_all(eT)

GetAndProcess
OneEventTask

eT

Event

reset()

Source

setEventInfo()

setIndex()

Schedule

process(fC)

Path A

reset()

push(lambda0)

[lambda0] processPresentPath(pathA) runAsync(pfC)

Filter
Wrapper A

reset()

runFilterAsync(0)

filterAsync()
wasRun()

doPrefetchAndWork()

create(this)

getAsync(getter0,fAWT)

Producer
Wrapper A

reset()

doProduceAsync(this,fAWT)

Producer A
 get queue

add(fAWT)

wasRun()

doPrefetchAndWork()

spawn(pAWT)

execute()

wasRun()

doProduce(e)
put(...)

doneWaiting()

Events Done
wait task

construct(loopContext)

2
execute()

DoWorkTask
fAWT

1

WaitList
producerA

2

0

1

doNextIfSuccess(…)

spawn(eT)

execute() reset() reset()

setEventInfo()

1
decr_ref

1

0

Filter A
 run queue

1

Schedule
Filtering
Callback

fC

construct(loopContext)

thread
safe

queue

Path
Filtering
Callback
pfC

FilterOnPath
Wrapper A

0prefetchAsync(fAWT)
incr_ref

push(lambda1)
incr_ref

decr_ref

[lambda1] doProduceAsyncImpl()

create(this)

DoWorkTask
pAWT

0

Filter
A

prefetchAsync(e,fAWT)

Producer
A

prefetchAsync(pAWT)

prefetchAsync(e,pAWT)

pushAndGetNextTask
 ToRun(lambda2)

[lambda2] doWork()

decr_ref

spawn(fAWT)execute()

[lambda3] doWork()
doFilter(e)

wasRun()doFilter()

get(getter0)operator()(...)aPathHasFinished(...)

decr path count

construct(loopContext)

operator()(...)

set path count

pushAndGetNextTask
 ToRun(lambda3)

Timing Diagram
One Filter
One Producer
One Simultaneous Event

